Comparing implementations of global and local indicators of spatial association

Functions to calculate measures of spatial association, especially measures of spatial autocorrelation, have been made available in many software applications. Measures may be global, applying to the whole data set under consideration, or local, applying to each observation in the data set. Methods of statistical inference may also be provided, but these will, like the measures themselves, depend on the support of the observations, chosen assumptions, and the way in which spatial association is represented; spatial weights are often used as a representational technique. In addition, assumptions may be made about the underlying mean model, and about error distributions. Different software implementations may choose to expose these choices to the analyst, but the sets of choices available may vary between these implementations, as may default settings. This comparison will consider the implementations of global Moran’s I, Getis–Ord G and Geary’s C, local $$I_i$$Ii and $$G_i$$Gi, available in a range of software including Crimestat, GeoDa, ArcGIS, PySAL and R contributed packages.

[1]  Roger Bivand,et al.  SYSTAT-compatible software for modeling spatial dependence among observations , 1992 .

[2]  Roger Bivand Applying Measures of Spatial Autocorrelation: Computation and Simulation , 2009 .

[3]  Bernd Resch,et al.  A statistical test on the local effects of spatially structured variance , 2017, Int. J. Geogr. Inf. Sci..

[4]  Michael Tiefelsdorf,et al.  Modelling Spatial Processes , 2000 .

[5]  Andrew O. Finley,et al.  spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.

[6]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[7]  R. Assunção,et al.  A new proposal to adjust Moran's I for population density. , 1999, Statistics in medicine.

[8]  R. Geary,et al.  The Contiguity Ratio and Statistical Mapping , 1954 .

[9]  Xun Li,et al.  Open Geospatial Analytics with PySAL , 2015, ISPRS Int. J. Geo Inf..

[10]  Wsd Wong,et al.  Statistical Analysis of Geographic Information with ArcView GIS And ArcGIS , 2005 .

[11]  Robert R. Sokal,et al.  Local Spatial Autocorrelation in a Biological Model , 2010 .

[12]  J. Ord,et al.  Testing for Local Spatial Autocorrelation in the Presence of Global Autocorrelation , 2001 .

[13]  Keith Ord,et al.  Evaluating the Percentage Points of a Spatial Autocorrelation Coefficient , 2010 .

[14]  Luc Anselin,et al.  The Moran scatterplot as an ESDA tool to assess local instability in spatial association , 2019, Spatial Analytical Perspectives on GIS.

[15]  B. Singer,et al.  Controlling the False Discovery Rate: A New Application to Account for Multiple and Dependent Tests in Local Statistics of Spatial Association , 2006 .

[16]  Roger Bivand Software and software design issues in the exploration of local dependence , 1998 .

[17]  M. Tiefelsdorf Modelling spatial processes : the identification and analysis of spatial relationships in regression residuals by means of Moran's I : with 32 figures and 8 talbes , 1999 .

[18]  Virgilio Gómez-Rubio,et al.  Detecting clusters of disease with R , 2005, J. Geogr. Syst..

[19]  Michael Tiefelsdorf,et al.  The Exact Distribution of Moran's I , 1995 .

[20]  Roger Bivand,et al.  Implementing Spatial Data Analysis Software Tools in R , 2006 .

[21]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[22]  Roger Bivand,et al.  Implementing functions for spatial statistical analysis using the language , 2000, J. Geogr. Syst..

[23]  Michael Tiefelsdorf,et al.  The Saddlepoint Approximation of Moran's I's and Local Moran's I i's Reference Distributions and Their Numerical Evaluation , 2002 .

[24]  Ned Levine,et al.  CrimeStat: A Spatial Statistical Program for the Analysis of Crime Incidents , 2008, Encyclopedia of GIS.

[25]  R. Sokal,et al.  Spatial autocorrelation in biology: 1. Methodology , 1978 .

[26]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[27]  Sergio J. Rey,et al.  PySAL: A Python Library of Spatial Analytical Methods , 2010 .

[28]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[29]  J. Keith Ord,et al.  Local spatial heteroscedasticity (LOSH) , 2012 .

[30]  Roger Bivand,et al.  Comparing Implementations of Estimation Methods for Spatial Econometrics , 2015 .

[31]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[32]  B. Boots,et al.  A Note on the Extremities of Local Moran's Iis and Their Impact on Global Moran's I , 2010 .

[33]  Moudud Alam,et al.  Fitting Conditional and Simultaneous Autoregressive Spatial Models in hglm , 2015, R J..

[34]  Brian J. L. Berry,et al.  Statistical Geography: Problems in Analyzing Areal Data , 1962 .

[35]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[36]  N. Levine Crime Mapping and the CrimeStat Program , 2006 .

[37]  Roger Bivand,et al.  A comparison of estimation methods for multilevel models of spatially structured data , 2017 .

[38]  Alexander Zipf,et al.  A local scale-sensitive indicator of spatial autocorrelation for assessing high- and low-value clusters in multiscale datasets , 2015, Int. J. Geogr. Inf. Sci..

[39]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[40]  Min Xu,et al.  A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic , 2014 .

[41]  Roger Bivand,et al.  Exploring Spatial Data Analysis Techniques Using R: The Case of Observations with No Neighbors , 2004 .

[42]  Roger Bivand,et al.  Power calculations for global and local Moran's I , 2009, Comput. Stat. Data Anal..

[43]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[44]  Mark V. Janikas,et al.  Spatial Statistics in ArcGIS , 2010 .

[45]  Roger Bivand,et al.  Implementing Representations of Space in Economic Geography , 2008 .

[46]  Youngihn Kho,et al.  GeoDa: An Introduction to Spatial Data Analysis , 2006 .

[47]  Lw Hepple,et al.  Exact Testing for Spatial Autocorrelation among Regression Residuals , 1998 .

[48]  Daniel P. McMillen,et al.  Spatial Autocorrelation Or Model Misspecification? , 2003 .