An efficient algorithm for strapdown accelerometer-based motion measurement

Abstract The paper is concerned with the measurement of motion of free floating bodies using accelerometers strapped to a cross-arm mounted on the body. The measurement system has been studied with the help of a formulation involving a set of coupled nonlinear initial-value equations involving the angular acceleration components. A PC-based software using the Bulirsch-Stoer technique has been developed to solve the initial-value problem so as to deduce the body motions from the measured accelerations. Suitable filtering strategy has been employed at every stage of numerical integration. The reliability of the strapdown accelerometer system together with software developed has been validated using a “dry” test. Typical motion measurements have been done in all the six degrees of freedom of a tug model in a wave flume. The method is deemed to be an efficient and cost-effective technique suitable for free floating bodies and for large motions.