Counting steps: a finitist approach to objective probability in physics

We propose a new interpretation of objective probability in statistical physics based on physical computational complexity. This notion applies to a single physical system (be it an experimental set-up in the lab, or a subsystem of the universe), and quantifies (1) the difficulty to realize a physical state given another, (2) the ‘distance’ (in terms of physical resources) between a physical state and another, and (3) the size of the set of time-complexity functions that are compatible with the physical resources required to reach a physical state from another. This view (a) exorcises ‘ignorance’ from statistical physics, and (b) underlies a new interpretation to non-relativistic quantum mechanics.

[1]  Jos Uffink,et al.  Subjective probability and statistical physics , 2009 .

[2]  R. Landauer The physical nature of information , 1996 .

[3]  Lawrence Sklar,et al.  Physics and Chance , 1993 .

[4]  Amr Sabry,et al.  Geometry of discrete quantum computing , 2012, 1206.5823.

[5]  S. Massar,et al.  Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation , 2001, quant-ph/0110004.

[6]  Jean Paul,et al.  Finitism in Geometry , 2002 .

[7]  Francesco Paoli,et al.  Some generalizations of fuzzy structures in quantum computational logic , 2011, Int. J. Gen. Syst..

[8]  M. Hogarth Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[9]  Donald L Reisler,et al.  Geometry Over a Finite Field , 1969 .

[10]  Roberto Giuntini,et al.  Quantum teleportation and quantum epistemic semantics , 2012 .

[11]  William K. Wootters,et al.  Evolution without evolution: Dynamics described by stationary observables , 1983 .

[12]  C. Isham,et al.  Spacetime and the Philosophical Challenge of Quantum Gravity , 2001 .

[13]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[14]  H. R. Coish ELEMENTARY PARTICLES IN A FINITE WORLD GEOMETRY , 1959 .

[15]  Oron Shagrir,et al.  Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.

[16]  J. Cirac,et al.  Nonlocal Hamiltonian simulation assisted by local operations and classical communication , 2002 .

[17]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[18]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[19]  R. Feynman Simulating physics with computers , 1999 .

[20]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[21]  D. Bohm,et al.  Time in the Quantum Theory and the Uncertainty Relation for Time and Energy , 1961 .

[22]  Jan Hilgevoord,et al.  The uncertainty principle for energy and time. II , 1996 .

[23]  Amr Sabry,et al.  Discrete quantum theories , 2013, 1305.3292.

[24]  Tim Maudlin,et al.  What could be objective about probabilities , 2007 .

[25]  David Z. Albert,et al.  Time and Chance , 2000 .

[26]  Meir Hemmo,et al.  The Road to Maxwell's Demon: Maxwell's Demon , 2012 .

[27]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[28]  Andrew David Irvine Frege on Number Properties , 2010, Stud Logica.

[29]  Itamar Pitowsky,et al.  Laplace's demon consults an oracle: The computational complexity of prediction , 1996 .

[30]  Hedley C. Morris,et al.  The present status of the coish model , 1974 .

[31]  J. Lebowitz,et al.  Long-time behavior of macroscopic quantum systems , 2010, 1003.2129.

[32]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[33]  J. Earman,et al.  Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.

[34]  Roberto Giuntini,et al.  Epistemic Quantum Computational Structures in a Hilbert-space Environment , 2012, Fundam. Informaticae.

[35]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[36]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[37]  I. Pitowsky,et al.  The Physical Church Thesis and Physical Computational Complexity , 2013 .

[38]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[39]  Julian Schwinger,et al.  Quantum Mechanics: Symbolism of Atomic Measurements , 2001 .

[40]  Itamar Pitowsky,et al.  Typicality and the Role of the Lebesgue Measure in Statistical Mechanics , 2012 .

[41]  James B. Hartle,et al.  Computability and physical theories , 1986, 1806.09237.

[42]  Roberto Giuntini,et al.  Entanglement as a Semantic Resource , 2010 .

[43]  Itamar Pitowsky,et al.  On the status of statistical inferences , 1985, Synthese.

[44]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[45]  Amit Hagar,et al.  A Philosopher Looks at Quantum Information Theory* , 2003, Philosophy of Science.