Magnetoresistive phenomena in an Fe-filled carbon nanotube/elastomer composite

DC magnetoresistive effects were observed in above-percolation-threshold loaded Fe-filled carbon nanotube/polyurethane–urea composite samples. A phenomenological model is derived from interpretation of resistance relaxation for a range of axial strains. The large instantaneous magnetoresistance of + 90% observed at low axial strain was a result of conduction pathway breaking caused by preferential orientation of the conducting nanotubes perpendicular to the axial current flow: a result of the magnetic torque experienced by the ferromagnetic nanotube core. At large strain the observed large instantaneous change in resistance of − 90% resulted from voltage-driven relaxation in the conducting nanotube network. At high axial strain the competition between voltage-driven relaxation and a magnetic torque gave rise to an oscillatory component of resistance relaxation.

[1]  T. Ding,et al.  Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation , 2008 .

[2]  B. Büchner,et al.  Iron-filled carbon nanotubes as probes for magnetic force microscopy , 2008 .

[3]  Mark Baxendale,et al.  Quantum conductance in single- and double-wall carbon nanotube networks , 2007 .

[4]  Rui Zhang,et al.  Universal resistivity-strain dependence of carbon nanotube/polymer composites , 2007 .

[5]  Michael R Wisnom,et al.  Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires , 2007 .

[6]  S. Subramanyam,et al.  Size-dependent magnetic properties of iron carbide nanoparticles embedded in a carbon matrix , 2007 .

[7]  T. Ruskov,et al.  Mössbauer morphological analysis of Fe-filled multiwalled carbon nanotube samples , 2006 .

[8]  B. Büchner,et al.  Magnetic force microscopy sensors using iron-filled carbon nanotubes , 2006 .

[9]  M. Terrones,et al.  Magnetism in Fe-based and carbon nanostructures: Theory and applications , 2006 .

[10]  W. Hsu,et al.  Fe-encapsulated carbon nanotubes: Nanoelectromagnets , 2005 .

[11]  T. Gemming,et al.  Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene , 2005 .

[12]  J. Fischer,et al.  Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites , 2005 .

[13]  W. Sigmund,et al.  Iron particles in carbon nanotubes , 2005 .

[14]  I. Mönch,et al.  Mössbauer transmission and back scattered conversion electron study of Fe nanowires encapsulated in multiwalled carbon nanotubes , 2004 .

[15]  Yihu Song,et al.  Time-dependent uniaxial piezoresistive behavior of high-density polyethylene/short carbon fiber conductive composites , 2004 .

[16]  I. Mönch,et al.  Magnetic properties of aligned Fe-filled carbon nanotubes , 2003 .

[17]  Claus M. Schneider,et al.  Synthesis and properties of filled carbon nanotubes , 2003 .

[18]  P. Watts,et al.  Fe-filled carbon nanotube-polystyrene: RCL composites , 2002 .

[19]  A. Govindaraj,et al.  Barkhausen jumps and related magnetic properties of iron nanowires encapsulated in aligned carbon nanotube bundles , 2002 .

[20]  Zhu-de Xu,et al.  Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane , 2002 .

[21]  M. Terrones,et al.  Hysteresis shift in Fe-filled carbon nanotubes due to γ-Fe , 2002 .

[22]  Riichiro Saito,et al.  Trigonal warping effect of carbon nanotubes , 2000 .

[23]  Mauricio Terrones,et al.  Enhanced magnetic coercivities in Fe nanowires , 1999 .

[24]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[25]  Vitaliy G. Shevchenko,et al.  Magnetic-field-sensitive polymer composite materials , 1994, Smart Structures.

[26]  G. Longworth Applications of Mossbauer Spectroscopy Vol II , 1981 .

[27]  S. Blundell Magnetism in Condensed Matter , 2001 .