Surface modification and fabrication of 3D nanostructures by atomic layer deposition

Atomic layer deposition (ALD) not only presents a direct way to prepare nanomaterials when combined with templates, but also allows surface engineering to fine-tune the properties of the material. Here, we review recent progress in the field of nanostructured materials and devices that have been fabricated by ALD. Various materials, including semiconducting, magnetic, noble metallic, and insulating materials, can be used to form three-dimensional (3D), complex nanostructures with controlled composition and physical properties. We begin this review with ALD nanomaterials that can be prepared from porous templates with a 2D pore arrangement, such as anodic aluminum oxide, and advance toward opal structures with a 3D pore arrangement. We also discuss surface engineering by ALD on existing nanowires/nanotubes, devices, and chemical patterns that has the potential for application in high-performance transistors, sensors, and green energy conversion. Finally, we provide perspectives for future device applications that could arise from ALD nanomaterials.

[1]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[2]  Changdeuck Bae,et al.  Contact area lithography and pattern transfer of self-assembled organic monolayers on SiO2/Si substrates. , 2011, Chemical communications.

[3]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[4]  Yanfa Yan,et al.  Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. , 2011, Nano letters.

[5]  J. Biskupek,et al.  Magnetic, Multilayered Nanotubes of Low Aspect Ratios for Liquid Suspensions , 2011 .

[6]  Andreas Stein,et al.  Colloidal assembly: the road from particles to colloidal molecules and crystals. , 2011, Angewandte Chemie.

[7]  Seunghun Hong,et al.  Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition , 2011 .

[8]  William J. Potscavage,et al.  Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates , 2011 .

[9]  K. Nielsch,et al.  Direct Atomic Layer Deposition of Ternary Ferrites with Various Magnetic Properties , 2010 .

[10]  Young Kwan Kim,et al.  Fabrication of Atomic Layer Deposited Zinc Oxide Thin Film Transistors with Organic Gate Insulator on Flexible Substrate , 2010 .

[11]  Sung-Wook Nam,et al.  Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. , 2010, Nano letters.

[12]  Adriana Szeghalmi,et al.  Tunable Guided‐Mode Resonance Grating Filter , 2010 .

[13]  U. Gösele,et al.  The transition between conformal atomic layer epitaxy and nanowire growth. , 2010, Journal of the American Chemical Society.

[14]  Stephen A. Morin,et al.  Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations , 2010, Science.

[15]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[16]  Kornelius Nielsch,et al.  Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. , 2009, ACS nano.

[17]  U. Gösele,et al.  A novel approach for fabrication of bismuth-silicon dioxide core-shell structures by atomic layer deposition , 2009 .

[18]  K. Nielsch,et al.  Atomic layer deposition of ZnS nanotubes , 2009, Nanotechnology.

[19]  B. Lee,et al.  Controlled Fabrication of Multiwall Anatase TiO2 Nanotubular Architectures , 2009 .

[20]  M. Reiche,et al.  Atomic Layer Deposition of Antimony Oxide and Antimony Sulfide , 2009 .

[21]  Han-Bo-Ram Lee,et al.  Applications of atomic layer deposition to nanofabrication and emerging nanodevices , 2009 .

[22]  S. H. Yang,et al.  Passivation of Bottom-Gate IGZO Thin Film Transistors , 2009 .

[23]  Jane P. Chang,et al.  Generation of oxide nanopatterns by combining self-assembly of S-layer proteins and area-selective atomic layer deposition. , 2008, Journal of the American Chemical Society.

[24]  J. Hupp,et al.  Radial electron collection in dye-sensitized solar cells. , 2008, Nano letters.

[25]  U. Gösele,et al.  A practical, self-catalytic, atomic layer deposition of silicon dioxide. , 2008, Angewandte Chemie.

[26]  G. Rubloff,et al.  TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures. , 2008, Small.

[27]  M. Karppinen,et al.  Blocking the lateral film growth at the nanoscale in area-selective atomic layer deposition. , 2008, Journal of the American Chemical Society.

[28]  J. Garno,et al.  Elucidating the role of surface hydrolysis in preparing organosilane nanostructures via particle lithography. , 2008, Nano letters.

[29]  J. Escrig,et al.  Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes , 2008, 1106.2833.

[30]  Gang Li,et al.  Patterning the surface of colloidal microspheres and fabrication of nonspherical particles. , 2008, Angewandte Chemie.

[31]  Do-Joong Lee,et al.  Formation of Ru Nanotubes by Atomic Layer Deposition onto an Anodized Aluminum Oxide Template , 2008 .

[32]  Seung-Man Yang,et al.  Synthesis and assembly of structured colloidal particles , 2008 .

[33]  K. Kukli,et al.  Atomic Layer Deposition of Iron Oxide Thin Films and Nanotubes using Ferrocene and Oxygen as Precursors , 2008 .

[34]  J. Hupp,et al.  Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Precursors , 2008 .

[35]  Hyunjun Yoo,et al.  Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications† , 2008 .

[36]  Jörg Appenzeller,et al.  Carbon Nanotubes for High-Performance Electronics—Progress and Prospect , 2008, Proceedings of the IEEE.

[37]  T. Baumann,et al.  Mechanisms of atomic layer deposition on substrates with ultrahigh aspect ratios. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[39]  Jooho Moon,et al.  Fabrication of monodisperse asymmetric colloidal clusters by using contact area lithography (CAL). , 2007, Journal of the American Chemical Society.

[40]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[41]  Hao Shen,et al.  Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. , 2007, Journal of the American Chemical Society.

[42]  Joseph T Hupp,et al.  ZnO nanotube based dye-sensitized solar cells. , 2007, Nano letters.

[43]  M. Knez,et al.  Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes , 2007 .

[44]  Han Gao,et al.  Combining atomic layer deposition with a template-assisted approach to fabricate size-reduced nanowire arrays on substrates and their electrochemical characterization , 2007 .

[45]  E. Graugnard,et al.  High filling fraction gallium phosphide inverse opals by atomic layer deposition , 2006 .

[46]  P. Sciortino,et al.  Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids. , 2006, Nano letters.

[47]  Clifford L. Henderson,et al.  Area selective atomic layer deposition of titanium dioxide : Effect of precursor chemistry , 2006 .

[48]  Mato Knez,et al.  Monocrystalline spinel nanotube fabrication based on the Kirkendall effect , 2006, Nature materials.

[49]  D. Gaillot,et al.  Sacrificial‐Layer Atomic Layer Deposition for Fabrication of Non‐Close‐Packed Inverse‐Opal Photonic Crystals , 2006 .

[50]  Mato Knez,et al.  Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin. , 2006, Nano letters.

[51]  E. Graugnard,et al.  Conformally Back‐Filled, Non‐close‐packed Inverse‐Opal Photonic Crystals , 2006 .

[52]  Stacey F. Bent,et al.  Chemistry for Positive Pattern Transfer Using Area‐Selective Atomic Layer Deposition , 2006 .

[53]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[54]  D. Farmer,et al.  Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. , 2006, Nano letters.

[55]  H. Dai,et al.  DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. , 2006, Journal of the American Chemical Society.

[56]  Changdeuck Bae,et al.  Contact area lithography (CAL) : A new approach to direct formation of nanometric chemical patterns , 2006 .

[57]  M. Sung,et al.  Light stamping lithography: microcontact printing without inks. , 2006, Journal of the American Chemical Society.

[58]  P. McIntyre,et al.  Atomic layer deposition of ultrathin metal-oxide films for nano-scale device applications , 2006 .

[59]  Walter Riess,et al.  Realization of a silicon nanowire vertical surround-gate field-effect transistor. , 2006, Small.

[60]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[61]  G. Ghibaudo,et al.  Review on high-k dielectrics reliability issues , 2005, IEEE Transactions on Device and Materials Reliability.

[62]  Elton Graugnard,et al.  TiO2 Inverse Opals Fabricated Using Low‐Temperature Atomic Layer Deposition , 2005 .

[63]  Robert P. H. Chang,et al.  Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition , 2005 .

[64]  Jin-seong Park,et al.  Tantalum(V) nitride inverse opals as photonic structures for visible wavelengths. , 2005, The journal of physical chemistry. B.

[65]  T. Gougousi,et al.  Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition , 2005 .

[66]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[67]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[68]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[69]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[70]  M. Sung,et al.  Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold , 2004 .

[71]  Kyoungah Cho,et al.  Al2O3 Nanotubes Fabricated by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers , 2004 .

[72]  R. Gordon,et al.  Atomic layer deposition of transition metals , 2003, Nature materials.

[73]  David C. Morton,et al.  High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition , 2003 .

[74]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[75]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[76]  S. Tolbert,et al.  Tungsten Nitride Inverse Opals by Atomic Layer Deposition , 2003 .

[77]  Esther Kim,et al.  A Kinetic Model for Step Coverage by Atomic Layer Deposition in Narrow Holes or Trenches , 2003 .

[78]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[79]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[80]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[81]  R. Könenkamp Carrier transport in nanoporous TiO 2 films , 2000 .

[82]  David Emin,et al.  High mobility n‐type charge carriers in large single crystals of anatase (TiO2) , 1994 .

[83]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[84]  Leung,et al.  Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. , 1990, Physical review letters.