Context and Adaptivity-Driven Visualization Method Selection

Novel and intelligent visualization methods are being developed in order to accommodate user searching and browsing tasks, including new and advanced functionalities. Besides, research in the field of user modeling is progressing in order to personalize these visualization systems, according to its users’ individual profiles. However, employing a single visualization system, may not suit best any information seeking activity. In this paper we present a visualization environment, which is based on a visualization library, i.e. is a set of visualization methods, from which the most appropriate one is selected for presenting information to the user. This selection is performed combining information extracted from the context of the user, the system configuration and the data collection. A set of rules inputs such information and assigns a score to all candidate visualization methods. The presented environment additionally monitors user behavior and preferences to adapt the visualization method selection criteria.

[1]  Akrivi Katifori,et al.  A Comparative Study of Four Ontology Visualization Techniques in Protege: Experiment Setup and Preliminary Results , 2006, Tenth International Conference on Information Visualisation (IV'06).

[2]  Fabio Paternò,et al.  Helping users through ubiquitous , personalised , interactive support in a sightseeing visit , 2003 .

[3]  Thomas W. Mastaglio,et al.  The role of critiquing in cooperative problem solving , 1991, TOIS.

[4]  Jay F. Nunamaker,et al.  Information Visualization for Collaborative Computing , 1998, Computer.

[5]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[6]  Man Lung Yiu,et al.  Efficient top-k aggregation of ranked inputs , 2007, TODS.

[7]  Andy Cockburn,et al.  Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments , 2002, CHI.

[8]  Rakesh Agrawal,et al.  A framework for expressing and combining preferences , 2000, SIGMOD '00.

[9]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[10]  Min Chen,et al.  A framework for adaptive visualization , 2006 .

[11]  Seng Wai Loke,et al.  Context-aware pervasive systems - architectures for a new breed of applications , 2019 .

[12]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[13]  Sihem Amer-Yahia,et al.  Adaptive processing of top-k queries in XML , 2005, 21st International Conference on Data Engineering (ICDE'05).

[14]  Mary Czerwinski,et al.  The Task Gallery: a 3D window manager , 2000, CHI.

[15]  Eunseok Lee,et al.  A Collective User Preference Management System for U-Commerce , 2007, APNOMS.

[16]  C. Ahlberg,et al.  IVEE : An Information Visualization & Exploration Environment , 1995 .

[17]  Mary Czerwinski,et al.  Data mountain: using spatial memory for document management , 1998, UIST '98.

[18]  Dmitri Roussinov Internet search using adaptive visualization , 1999, CHI EA '99.

[19]  Akrivi Katifori,et al.  A Context-Based Adaptive Visualization Environment , 2006, Tenth International Conference on Information Visualisation (IV'06).

[20]  Andrew E. Johnson,et al.  PAVIS – Pervasive Adaptive Visualization and Interaction Service , 2006 .

[21]  Ben Shneiderman,et al.  Visualizing Digital Library Search Results with Categorical and Hierarchical Axes , 2003 .

[22]  Costas Vassilakis,et al.  Adaptive Virtual Reality Shopping Malls , 2006 .

[23]  T. J. Jankun-Kelly,et al.  MoireGraphs: radial focus+context visualization and interaction for graphs with visual nodes , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[24]  Marcus Specht,et al.  Personalization and Context Management , 2005, User Modeling and User-Adapted Interaction.

[25]  Laurent Robert,et al.  An integrated reading and editing environment for scholarly research on literary works and their handwritten sources , 1998, DL '98.

[26]  Susan T. Dumais,et al.  Milestones in Time: The Value of Landmarks in Retrieving Information from Personal Stores , 2003, INTERACT.

[27]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[28]  Dieter W. Fellner,et al.  Adaptive Visualization of Distributed 3D Documents Using Image Streaming Techniques , 2001, Eurographics Multimedia Workshop.

[29]  Harvey S. Smallman,et al.  Information Availability in 2D and 3D Displays , 2001, IEEE Computer Graphics and Applications.

[30]  Akrivi Katifori,et al.  Ontology visualization methods—a survey , 2007, CSUR.

[31]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[32]  Jock D. Mackinlay,et al.  Cone Trees: animated 3D visualizations of hierarchical information , 1991, CHI.

[33]  Luca Chittaro,et al.  Dynamic generation of personalized VRML content: a general approach and its application to 3D e-commerce , 2002, Web3D '02.

[34]  Giorgos Lepouras Applying clustering algorithms to web-based adaptive virtual environments , 2007, J. Comput. Methods Sci. Eng..

[35]  Vassilakis Costas,et al.  Visualizing a temporally-enhanced ontology , 2006 .

[36]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[37]  Keith Andrews,et al.  Visual exploration of large hierarchies with information pyramids , 2002, Proceedings Sixth International Conference on Information Visualisation.

[38]  Costas Vassilakis,et al.  Adaptive Virtual Reality Museums on the Web , 2005 .

[39]  ShneidermanBen Tree visualization with tree-maps , 1992 .

[40]  Christopher Ahlberg,et al.  IVEE: an Information Visualization and Exploration Environment , 1995, Proceedings of Visualization 1995 Conference.

[41]  Krzysztof Walczak,et al.  Periscope: a system for adaptive 3D visualization of search results , 2004, Web3D '04.

[42]  Gitta Domik,et al.  User modeling for adaptive visualization systems , 1994, Proceedings Visualization '94.

[43]  Mark Chignell,et al.  Hierarchical data visualization in desktop virtual reality , 2000 .

[44]  Peter Brusilovsky,et al.  Adaptive navigation support in educational hypermedia: the role of student knowledge level and the case for meta-adaptation , 2003, Br. J. Educ. Technol..

[45]  Margaret-Anne D. Storey,et al.  A multi-perspective software visualization environment , 2000, CASCON.