Structure-guided Discovery of Dual-recognition Chemibodies

[1]  P. S. Andersen,et al.  Novel antibody–antibiotic conjugate eliminates intracellular S. aureus , 2015, Nature.

[2]  C. Bertozzi,et al.  Site-Specific Antibody–Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development , 2014, Bioconjugate chemistry.

[3]  Andy Lin,et al.  Structure-Based Druggability Assessment of the Mammalian Structural Proteome with Inclusion of Light Protein Flexibility , 2014, PLoS Comput. Biol..

[4]  Chan Hyuk Kim,et al.  Bispecific small molecule–antibody conjugate targeting prostate cancer , 2013, Proceedings of the National Academy of Sciences.

[5]  E. Rosenthal,et al.  A novel extracellular drug conjugate significantly inhibits head and neck squamous cell carcinoma. , 2013, Oral oncology.

[6]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[7]  Peter G. Schultz,et al.  Reshaping Antibody Diversity , 2013, Cell.

[8]  E. Perez,et al.  Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  N. Walker,et al.  An Inhibitory Antibody against Dipeptidyl Peptidase IV Improves Glucose Tolerance in Vivo , 2012, The Journal of Biological Chemistry.

[10]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[11]  D. Drucker,et al.  Incretin-based therapies for type 2 diabetes mellitus , 2009, Nature Reviews Endocrinology.

[12]  E. Knapp,et al.  Statistical thermodynamics of the stability of multivalent ligand-receptor complexes. , 2008, Physical review letters.

[13]  M. Tadayyon,et al.  (R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a Novel Xanthine-Based Dipeptidyl Peptidase 4 Inhibitor, Has a Superior Potency and Longer Duration of Action Compared with Other Dipeptidyl Peptidase-4 Inhibitors , 2008, Journal of Pharmacology and Experimental Therapeutics.

[14]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[15]  Joanna Owens,et al.  Target validation: Determining druggability , 2007, Nature Reviews Drug Discovery.

[16]  G. Scapin,et al.  (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. , 2005, Journal of medicinal chemistry.

[17]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[18]  N. Thornberry,et al.  Substituted piperazines as novel dipeptidyl peptidase IV inhibitors. , 2004, Bioorganic & medicinal chemistry letters.

[19]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[20]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[21]  A. C. Crawford,et al.  SOME CONVENIENT LABORATORY APPARATUS , 1909 .

[22]  Daniel R. Caffrey,et al.  Structure-based maximal affinity model predicts small-molecule druggability , 2007, Nature Biotechnology.