Detection of signs of disease in external photographs of the eyes via deep learning

[1]  A. Caspi,et al.  A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre , 2020, Nature Biomedical Engineering.

[2]  Dima M. Qato,et al.  Use and Content of Primary Care Office-Based vs Telemedicine Care Visits During the COVID-19 Pandemic in the US , 2020, JAMA network open.

[3]  J. Jonas,et al.  Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. , 2020, The Lancet. Digital health.

[4]  Geoffrey H. Tison,et al.  A digital biomarker of diabetes from smartphone-based vascular signals , 2020, Nature Medicine.

[5]  Guilherme de Oliveira Marinho,et al.  Predicting Risk of Developing Diabetic Retinopathy using Deep Learning , 2020, The Lancet. Digital health.

[6]  J. Jonas,et al.  A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. , 2020, The Lancet. Digital health.

[7]  Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs - An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. , 2020, Ophthalmology.

[8]  Ming-Hsiu Lin,et al.  Serum lipids and risk of atherosclerosis in xanthelasma palpebrarum: A systematic review and meta-analysis. , 2020, Journal of the American Academy of Dermatology.

[9]  Pearse A. Keane,et al.  Insights into Systemic Disease through Retinal Imaging-Based Oculomics , 2020, Translational vision science & technology.

[10]  Subhashini Venugopalan,et al.  Detection of anaemia from retinal fundus images via deep learning , 2019, Nature Biomedical Engineering.

[11]  G. Murthy,et al.  Systematic review on barriers and enablers for access to diabetic retinopathy screening services in different income settings , 2019, PloS one.

[12]  J. Dutton Anatomic Considerations in Thyroid Eye Disease. , 2018, Ophthalmic plastic and reconstructive surgery.

[13]  Nuwan D. Nanayakkara,et al.  Detection of Diabetes by Macrovascular Tortuosity of Superior Bulbar Conjunctiva , 2018, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[14]  R. J. Hofmann,et al.  Ocular Manifestations of Obstructive Sleep Apnea. , 2017, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[15]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[16]  M. Basiry,et al.  Distribution of Different Sized Ocular Surface Vessels in Diabetics and Normal Individuals , 2017, Journal of ophthalmic & vision research.

[17]  Michael V. McConnell,et al.  Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning , 2017, Nature Biomedical Engineering.

[18]  H. Nagaraja,et al.  A Nonparametric Approach , 2017 .

[19]  Cassie A. Ludwig,et al.  Training time and quality of smartphone-based anterior segment screening in rural India , 2017, Clinical ophthalmology.

[20]  V. Gurunadh,et al.  A clinical correlation of conjunctival microangiopathy with grades of retinopathy in type 2 diabetes mellitus. , 2017, Medical journal, Armed Forces India.

[21]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[22]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[23]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  Sandor R. Ferenczy,et al.  iPhone 4s and iPhone 5s Imaging of the Eye , 2016, Ocular Oncology and Pathology.

[25]  P. Keane,et al.  Fundus Photography in the 21st Century--A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare. , 2016, Telemedicine journal and e-health : the official journal of the American Telemedicine Association.

[26]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Akbar Fotouhi,et al.  White-to-white corneal diameter distribution in an adult population , 2015, Journal of current ophthalmology.

[28]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[29]  April Y Maa,et al.  Effect of a teleretinal screening program on eye care use and resources. , 2014, JAMA ophthalmology.

[30]  B. Tarlan,et al.  Subconjunctival hemorrhage: risk factors and potential indicators , 2013, Clinical ophthalmology.

[31]  M. Rosner,et al.  Ocular Problems in the Patient with End‐Stage Renal Disease , 2012, Seminars in dialysis.

[32]  Lawrence E. Barker,et al.  Access to Health Care and Control of ABCs of Diabetes , 2012, Diabetes Care.

[33]  M. Stevenson,et al.  Diagnostic venepuncture: systematic review of adverse events , 2012 .

[34]  Anne Tybjærg-Hansen,et al.  Xanthelasmata, arcus corneae, and ischaemic vascular disease and death in general population: prospective cohort study , 2011, BMJ : British Medical Journal.

[35]  Wolfgang H. Zangemeister,et al.  Pupillary responses to single and sinusoidal light stimuli in diabetic patients , 2009, Neurology international.

[36]  Jorge A Cuadros,et al.  EyePACS: An Adaptable Telemedicine System for Diabetic Retinopathy Screening , 2009, Journal of diabetes science and technology.

[37]  L. Senelick It (review) , 2008 .

[38]  Christopher G Owen,et al.  Diabetes and the tortuosity of vessels of the bulbar conjunctiva. , 2008, Ophthalmology.

[39]  Christopher G Owen,et al.  Vascular response of the bulbar conjunctiva to diabetes and elevated blood pressure. , 2005, Ophthalmology.

[40]  Florian Rüfer,et al.  White-to-White Corneal Diameter: Normal Values in Healthy Humans Obtained With the Orbscan II Topography System , 2005, Cornea.

[41]  W. Cornblath Thyroid eye disease , 2000, Current treatment options in neurology.

[42]  D. Klonoff,et al.  An economic analysis of interventions for diabetes. , 2000, Diabetes care.

[43]  O. P. van Bijsterveld,et al.  Limbal and corneal calcification in patients with chronic renal failure. , 1993, The British journal of ophthalmology.

[44]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[45]  D. Worthen,et al.  Morphometry of diabetic conjunctival blood vessels. , 1981, Ophthalmology.

[46]  Danilova Ai Blood circulation in the conjunctival blood vessels of patients with diabetes mellitus , 1980 .

[47]  D. Worthen,et al.  Quantitative morphometry of conjunctival microcirculation in diabetes mellitus. , 1979, Microvascular research.

[48]  P. Sönksen,et al.  Pupillary signs in diabetic autonomic neuropathy. , 1978, British medical journal.

[49]  F. Mihălțan,et al.  Eyelid laxity and sleep apnea syndrome: a review , 2019, Romanian journal of ophthalmology.

[50]  Dr. Rishi Kumar Sharma,et al.  Assessment of Conjunctival Vessel Calibre in Type-2 Diabetes Mellitus Patients , 2017 .

[51]  Ramprasaath R. Selvaraju,et al.  Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization , 2016 .

[52]  A. Cheung,et al.  Real-time studies of hypertension using non-mydriatic fundus photography and computer-assisted intravital microscopy. , 2013, Clinical hemorheology and microcirculation.

[53]  V. Preedy,et al.  Prospective Cohort Study , 2010 .

[54]  R. Berg,et al.  A Systematic Review and Meta-analysis , 2010 .

[55]  J. Sengupta The Nonparametric Approach , 1989 .

[56]  Á. Hreidarsson Pupil size in insulin-dependent diabetes. Relationship to duration, metabolic control, and long-term manifestations. , 1982, Diabetes.

[57]  A. I. Danilova [Blood circulation in the conjunctival blood vessels of patients with diabetes mellitus]. , 1980, Problemy endokrinologii.