The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections

The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons and that early developing EB neurons play an important regulatory role in EB laminae formation. The transmembrane proteins semaphorin-1a (Sema-1a) and plexin A function together to regulate R axon lamination. R neurons recruit both GABA and GABA-A receptors to their axon terminals in the EB, and optogenetic stimulation coupled with electrophysiological recordings show that Sema-1a-dependent R axon lamination is required for preventing the spread of synaptic inhibition between adjacent EB lamina. These results provide direct evidence that EB lamination is critical for local pre-synaptic inhibitory circuit organization. DOI: http://dx.doi.org/10.7554/eLife.25328.001

[1]  Nikolas Nikolaou,et al.  Lamination Speeds the Functional Development of Visual Circuits , 2015, Neuron.

[2]  Qili Liu,et al.  Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit , 2016, Cell.

[3]  Rachel I. Wilson Early olfactory processing in Drosophila: mechanisms and principles. , 2013, Annual review of neuroscience.

[4]  Y. Hamasaka,et al.  γ‐Aminobutyric acid (GABA) signaling components in Drosophila: Immunocytochemical localization of GABAB receptors in relation to the GABAA receptor subunit RDL and a vesicular GABA transporter , 2007, The Journal of comparative neurology.

[5]  Matthias Landgraf,et al.  Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[6]  Chi-Hon Lee,et al.  Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation , 2015, Nature Communications.

[7]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[8]  Yisheng He,et al.  Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex , 2013, The Journal of comparative neurology.

[9]  Masahito Yamagata,et al.  Many paths to synaptic specificity. , 2009, Annual review of cell and developmental biology.

[10]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[11]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[12]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[13]  Onkar S. Dhande,et al.  Functional Assembly of Accessory Optic System Circuitry Critical for Compensatory Eye Movements , 2015, Neuron.

[14]  S. Zipursky,et al.  N-Cadherin Regulates Target Specificity in the Drosophila Visual System , 2001, Neuron.

[15]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[16]  Zhefeng Gong,et al.  Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. , 2009, Learning & memory.

[17]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[18]  Roland Strauss,et al.  Cell types and coincident synapses in the ellipsoid body of Drosophila , 2014, The European journal of neuroscience.

[19]  Minrong Ai,et al.  Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila , 2013, Nature Neuroscience.

[20]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[21]  John Tyler Bonner,et al.  Morphogenesis , 1965, Cell.

[22]  T. Uemura,et al.  Axon Patterning Requires D N-cadherin, a Novel Neuronal Adhesion Receptor, in the Drosophila Embryonic CNS , 1997, Neuron.

[23]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.

[24]  David J. Anderson,et al.  Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin , 2013, Nature Methods.

[25]  Ian S. Macdonald,et al.  Hexameric GFP and mCherry Reporters for the Drosophila GAL4, Q, and LexA Transcription Systems , 2014, Genetics.

[26]  A. Kolodkin,et al.  The Transmembrane Semaphorin Sema I Is Required in Drosophila for Embryonic Motor and CNS Axon Guidance , 1998, Neuron.

[27]  F. Diao,et al.  Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. , 2015, Cell reports.

[28]  Y. Rao,et al.  Plexin A-Semaphorin-1a Reverse Signaling Regulates Photoreceptor Axon Guidance in Drosophila , 2010, The Journal of Neuroscience.

[29]  L. Luo,et al.  Graded Expression of Semaphorin-1a Cell-Autonomously Directs Dendritic Targeting of Olfactory Projection Neurons , 2007, Cell.

[30]  L. Luo,et al.  Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling , 2014, Science.

[31]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[32]  Nele A. Haelterman,et al.  MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes , 2011, Nature Methods.

[33]  Herwig Baier,et al.  Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. , 2013, Annual review of cell and developmental biology.

[34]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[35]  Jaison J. Omoto,et al.  Development of the anterior visual input pathway to the Drosophila central complex , 2017, The Journal of comparative neurology.

[36]  L. Luo,et al.  Temporal Target Restriction of Olfactory Receptor Neurons by Semaphorin-1a/PlexinA-Mediated Axon-Axon Interactions , 2007, Neuron.

[37]  J. Armstrong,et al.  Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. , 1999, Journal of neurobiology.

[38]  B. Rudy,et al.  Drosophila SLC5A11 Mediates Hunger by Regulating K+ Channel Activity , 2016, Current Biology.

[39]  Y. Rao,et al.  Control of axon–axon attraction by Semaphorin reverse signaling , 2014, Proceedings of the National Academy of Sciences.

[40]  A. Nern,et al.  Multiple Interactions Control Synaptic Layer Specificity in the Drosophila Visual System , 2013, Neuron.

[41]  M. Carlsson,et al.  Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila , 2012, Neuroscience.

[42]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[43]  C. Battistini,et al.  Transmembrane semaphorins, forward and reverse signaling: have a look both ways , 2016, Cellular and Molecular Life Sciences.

[44]  Aaron DiAntonio,et al.  Increased Expression of the Drosophila Vesicular Glutamate Transporter Leads to Excess Glutamate Release and a Compensatory Decrease in Quantal Content , 2004, The Journal of Neuroscience.

[45]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[46]  A. Kolodkin,et al.  The Control of Semaphorin-1a-Mediated Reverse Signaling by Opposing Pebble and RhoGAPp190 Functions in Drosophila , 2012, Neuron.

[47]  Masahito Yamagata,et al.  SIDEKICK 2 DIRECTS FORMATION OF A RETINAL CIRCUIT THAT DETECTS DIFFERENTIAL MOTION , 2015, Nature.

[48]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[49]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[50]  Aike Guo,et al.  Two Clusters of GABAergic Ellipsoid Body Neurons Modulate Olfactory Labile Memory in Drosophila , 2013, The Journal of Neuroscience.

[51]  G. Bashaw,et al.  Sema-1a Reverse Signaling Promotes Midline Crossing in Response to Secreted Semaphorins. , 2017, Cell reports.

[52]  G. Preti,et al.  Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions , 2015, eLife.

[53]  J. Sanes,et al.  Chemoaffinity Revisited: Dscams, Protocadherins, and Neural Circuit Assembly , 2010, Cell.

[54]  C. Goodman,et al.  Plexin A Is a Neuronal Semaphorin Receptor that Controls Axon Guidance , 1998, Cell.

[55]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[56]  Bart C. Jongbloets,et al.  Semaphorin signalling during development , 2014, Development.

[57]  J. Armstrong,et al.  Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets , 2010, The Journal of comparative neurology.

[58]  Zhefeng Gong,et al.  Visual pattern memory requires foraging function in the central complex of Drosophila. , 2008, Learning & memory.

[59]  J. Staiger,et al.  Persistence of Functional Sensory Maps in the Absence of Cortical Layers in the Somsatosensory Cortex of Reeler Mice , 2014, Cerebral cortex.

[60]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[61]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[62]  Ronald L. Davis,et al.  GABAA Receptor RDL Inhibits Drosophila Olfactory Associative Learning , 2007, Neuron.

[63]  C. Schulte,et al.  Semaphorin-1a Controls Receptor Neuron-Specific Axonal Convergence in the Primary Olfactory Center of Drosophila , 2007, Neuron.

[64]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[65]  P. Hiesinger,et al.  Wiring visual systems: common and divergent mechanisms and principles , 2017, Current Opinion in Neurobiology.

[66]  J. Sanes,et al.  Type II Cadherins Guide Assembly of a Direction-Selective Retinal Circuit , 2014, Cell.

[67]  Y. Rao,et al.  Semaphorin-1a Functions as a Guidance Receptor in the Drosophila Visual System , 2006, The Journal of Neuroscience.

[68]  J. Armstrong,et al.  Building the central complex in Drosophila: The generation and development of distinct neural subsets , 2010, The Journal of comparative neurology.

[69]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[70]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[71]  Vivek Jayaraman,et al.  The insect central complex , 2016, Current Biology.

[72]  Alex L Kolodkin,et al.  Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. , 2017, Annual review of neuroscience.

[73]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[74]  Yanhui Hu,et al.  The Transgenic RNAi Project at Harvard Medical School: Resources and Validation , 2015, Genetics.