A fractional-Order Delay Differential Model for Ebola Infection and CD8+ T-cells Response: Stability analysis and Hopf bifurcation
暂无分享,去创建一个
R. Rakkiyappan | Fathalla A. Rihan | G. Velmurugan | V. Preethi Latha | R. Rakkiyappan | G. Velmurugan | V. P. Latha
[1] Fathalla A. Rihan,et al. Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation , 2014, Math. Comput. Simul..
[2] Thomas Hoenen,et al. Ebola virus: unravelling pathogenesis to combat a deadly disease. , 2006, Trends in molecular medicine.
[3] Michael Y. Li,et al. Global Dynamics of an In-host Viral Model with Intracellular Delay , 2010, Bulletin of mathematical biology.
[4] Y. Chen,et al. Fractional Processes and Fractional-Order Signal Processing , 2012 .
[5] Zaid M. Odibat,et al. Generalized Taylor's formula , 2007, Appl. Math. Comput..
[6] Delfim F. M. Torres,et al. Dynamics of Dengue epidemics when using optimal control , 2010, Math. Comput. Model..
[7] Fathalla A. Rihan. Computational methods for delay parabolic and time‐fractional partial differential equations , 2010 .
[8] J. Audet,et al. Immune evasion in ebolavirus infections. , 2015, Viral immunology.
[9] J. Y. T. Mugisha,et al. A host-vector model for malaria with infective immigrants , 2010 .
[10] Fathalla A. Rihan. Numerical Modeling of Fractional-Order Biological Systems , 2013 .
[11] Zvi S. Roth,et al. Mathematical Modeling of Ebola Virus Dynamics as a Step towards Rational Vaccine Design , 2010 .
[12] Hanan Batarfi,et al. On a fractional order Ebola epidemic model , 2015 .
[13] Delfim F. M. Torres,et al. Vaccination models and optimal control strategies to dengue. , 2013, Mathematical biosciences.
[14] Thomas J. Anastasio,et al. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons , 1994, Biological Cybernetics.
[15] Wei-Ching Chen,et al. Nonlinear dynamics and chaos in a fractional-order financial system , 2008 .
[16] Dumitru Baleanu,et al. On Fractional SIRC Model withSalmonellaBacterial Infection , 2014 .
[17] L. A. Rvachev,et al. A mathematical model for the global spread of influenza , 1985 .
[18] Wei Lin. Global existence theory and chaos control of fractional differential equations , 2007 .
[19] Fathalla A. Rihan,et al. Delay differential model for tumour–immune dynamics with HIV infection of CD4+ T-cells , 2013, Int. J. Comput. Math..
[20] M. Nowak,et al. Population Dynamics of Immune Responses to Persistent Viruses , 1996, Science.
[21] H. Tuckwell. Viral Population Growth Models , 2005 .
[22] K. Cole. ELECTRIC CONDUCTANCE OF BIOLOGICAL SYSTEMS , 1933 .
[23] José António Tenreiro Machado,et al. Fractional model for malaria transmission under control strategies , 2013, Comput. Math. Appl..
[24] A. Neumann,et al. Global stability and periodic solution of the viral dynamics , 2007 .
[25] Elif Demirci,et al. A fractional order SEIR model with vertical transmission , 2011, Math. Comput. Model..
[26] Tomonari Suzuki,et al. A generalized Banach contraction principle that characterizes metric completeness , 2007 .
[27] Ahmed M. A. El-Sayed,et al. On the fractional-order logistic equation , 2007, Appl. Math. Lett..
[28] Xianhua Tang,et al. Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays , 2011, Neurocomputing.
[29] Jean M. Tchuenche,et al. A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria , 2008, Appl. Math. Comput..