Numerical solution and perturbation theory for generalized Lyapunov equations

We discuss the numerical solution and perturbation theory for the generalized continuoustime Lyapunov equation E ⁄ XA+A ⁄ XE =iG with a singular matrix E. If this equation has a solution, it is not unique. We generalize a Bartels-Stewart method and a Hammarling method to compute a partial solution of the generalized Lyapunov equation with a special right-hand side. A spectral condition number is introduced and perturbation bounds for such an equation are presented. Numerical examples are given.

[1]  Tatjana Stykel,et al.  On criteria for asymptotic stability of differential-algebraic equations , 2002 .

[2]  T. Stykel Numerische Simulation auf massiv parallelen Rechnern , 2000 .

[3]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[4]  Charles Kenney,et al.  The sensitivity of the stable Lyapunov equation , 1987 .

[5]  ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS , 1983 .

[6]  David S. Watkins Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..

[7]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[8]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[9]  Petko H. Petkov,et al.  On properties of Sylvester and Lyapunov operators , 2000 .

[10]  Isak Jonsson,et al.  Recursive blocked algorithms for solving triangular systems—Part I: one-sided and coupled Sylvester-type matrix equations , 2002, TOMS.

[11]  F. R. Gantmakher The Theory of Matrices , 1984 .

[12]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[13]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[14]  Alan J. Laub,et al.  Algorithm 705; a FORTRAN-77 software package for solving the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[17]  K. Chu The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .

[18]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[19]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[20]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[21]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[22]  Vladimir B. Larin,et al.  Generalized Lyapunov equation and factorization of matrix polynomials , 1993 .

[23]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[24]  Peter Lancaster,et al.  ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS , 1966 .

[25]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[26]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[27]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[28]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[29]  E. M. Wright Solution of the equation $ze^z = a$ , 1959 .

[30]  B. Kågström,et al.  Generalized Schur methods with condition estimators for solving the generalized Sylvester equation , 1989 .

[31]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[32]  Bo Kågström,et al.  A Perturbation Analysis of the Generalized Sylvester Equation $( AR - LB,DR - LE ) = ( C,F )$ , 1994, SIAM J. Matrix Anal. Appl..

[33]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[34]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[35]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[36]  Peter C. Müller,et al.  Stability of Linear Mechanical Systems With Holonomic Constraints , 1993 .

[37]  B MolerCleve,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992 .

[38]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[39]  Nancy Nichols,et al.  On the stability radius of a generalized state-space system , 1993 .

[40]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[41]  Isak Jonsson,et al.  Recursive blocked algorithms for solving triangular systems—Part II: two-sided and generalized Sylvester and Lyapunov matrix equations , 2002, TOMS.

[42]  D. Bender Lyapunov-like equations and reachability/observabiliy Gramians for descriptor systems , 1987 .

[43]  Tosio Kato Perturbation theory for linear operators , 1966 .

[44]  Antony Jameson,et al.  Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .

[45]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[46]  Bo Kågström,et al.  LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs , 1994, TOMS.

[47]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.