Internal friction associated with ε martensite in shape memory steels produced by casting route and through additive manufacturing: influence of thermal cycling on the martensitic transformation

[1]  Honglei Wu,et al.  Iron-Based Shape Memory Alloys in Construction: Research, Applications and Opportunities , 2022, Materials.

[2]  Young‐kook Lee,et al.  Stasis mechanism of γ → ε martensitic transformation in Fe-17Mn alloy , 2021 .

[3]  T. Sawaguchi,et al.  Low-Cycle Fatigue Life and Plasticity Mechanisms of a Fe−15Mn−10Cr−8Ni−4Si Seismic Damping Alloy Under Cyclic Loading at Various Temperatures , 2020, Acta Materialia.

[4]  J. Gómez‐Cortés,et al.  High-temperature shape memory alloys based on the Cu-Al-Ni system: design and thermomechanical characterization , 2020 .

[5]  T. Sawaguchi,et al.  Superior fatigue life of Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy subjected to extremely high strain amplitudes , 2018, Materials Letters.

[6]  Liying Sun,et al.  Structure of the Fe-Mn-Si alloys submitted to γ ↔ ε thermocycling , 2018, Materials Characterization.

[7]  J. Malarría,et al.  The shape recovery conditions for Fe–Mn–Si alloys: An interplay between martensitic transformation and plasticity , 2018 .

[8]  Huabei Peng,et al.  Key Factors Achieving Large Recovery Strains in Polycrystalline Fe–Mn–Si‐Based Shape Memory Alloys: A Review , 2018 .

[9]  H. Sehitoglu,et al.  On deformation behavior of Fe-Mn based structural alloys , 2017 .

[10]  P. Roca,et al.  Shape-Memory Effect and Pseudoelasticity in Fe–Mn-Based Alloys , 2017, Shape Memory and Superelasticity.

[11]  J. Malarría,et al.  Gaining flexibility in the design of microstructure, texture and shape memory properties of an Fe-Mn-Si-Cr-Ni alloy processed by ECAE and annealing , 2016 .

[12]  Amirhesam Amerinatanzi,et al.  Fabrication of NiTi through additive manufacturing: A review , 2016 .

[13]  C. Emmelmann,et al.  Additive Manufacturing of Metals , 2016 .

[14]  T. Tsuchiyama,et al.  Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation , 2016 .

[15]  D. Raabe,et al.  Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries , 2014, Nature Communications.

[16]  Antoni Cladera,et al.  Iron-based shape memory alloys for civil engineering structures: An overview , 2014 .

[17]  J. Malarría,et al.  A manufacturing process for shaft and pipe couplings of Fe–Mn–Si–Ni–Cr shape memory alloys , 2014 .

[18]  T. Kurita,et al.  Innovation in producing crane rail fishplate using Fe–Mn–Si–Cr based shape memory alloy , 2008 .

[19]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[20]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[21]  J. Juan,et al.  High performance very low frequency forced pendulum , 2004 .

[22]  J. Humbeeck,et al.  Panel discussion on the application of HDM , 2003 .

[23]  J. Juan,et al.  Damping behavior during martensitic transformation in shape memory alloys , 2003 .

[24]  Yoshimi Watanabe,et al.  Smart Materials-Fundamentals and Applications. Enhanced Mechanical Properties of Fe-Mn-Si-Cr Shape Memory Fiber/Plaster Smart Composite. , 2002 .

[25]  J. Juan 1.2 Mechanical spectroscopy , 2001 .

[26]  R. B. Pérez-Sáez,et al.  5.4 Transitory Effects , 2001 .

[27]  M. Andrade,et al.  The influence of thermal cycling on the transition temperatures of a Fe-Mn-Si shape memory alloy , 1999 .

[28]  T. Hsu,et al.  Thermodynamic consideration of antiferromagnetic transition on fcc(γ)→hcp(ε) martensitic transformation in Fe-Mn-Si shape memory alloys , 1999 .

[29]  K. Ishida,et al.  Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys , 1996 .

[30]  R. B. Pérez-Sáez,et al.  Influence of Thermal Cycling in a Fe-Mn-Si-Cr Shape Memory Alloy , 1995 .

[31]  R. B. Pérez-Sáez,et al.  Internal friction in FeMnCrSiNi shape memory alloys , 1994 .

[32]  J. Humbeeck,et al.  A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys , 1994 .

[33]  Tan Shiming,et al.  Two-way shape memory effect of an Fe-Mn-Si alloy , 1991 .

[34]  K. Tsuzaki,et al.  Effect of Transformation Cycling on the ε Martensitic Transformation in Fe-Mn Alloys , 1990 .

[35]  M. Murakami,et al.  EFFECT OF Si ON THE SHAPE MEMORY EFFECT OF POLYCRYSTALLINE Fe-Mn-Si ALLOYS. , 1986 .

[36]  Y. Yamaji,et al.  Orientation and composition dependencies of shape memory effect IN Fe-Mn-Si alloys , 1984 .

[37]  A. Sato,et al.  Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals , 1982 .

[38]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations , 1976 .

[39]  A. Bogers,et al.  Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice , 1964 .

[40]  V. Cheverikin,et al.  Effect of thermal cycling on microstructure and damping capacity of Fe–26Mn–4Si alloy , 2020 .

[41]  K. Nurveren FERROUS SHAPE MEMORY ALLOYS , 2013 .

[42]  S. Takaki,et al.  Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy , 1993 .

[43]  K. Tsuzaki,et al.  Effect of Thermal Cycling on the Martensitic Transformation in an Fe–24Mn–6Si Shape Memory Alloy , 1992 .

[44]  G. Olson,et al.  A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation , 1976 .