Scalable ion trap quantum computation in decoherence-free subspaces with pairwise interactions only

We show that universal ion trap computation can be performed on decoherence-free subspaces (DFS's) using only two-qubit operations. One logical qubit is minimally encoded into three physical qubits. The encoded qubit is in a DFS under collective decoherence. Encoded single- and two-qubit logical operations are implemented via the Soerensen-Moelmer interaction. We show that alternation of the effective Hamiltonians for two particular phase configurations of control fields approximates an anisotropic exchange interaction that has recently been shown to be universal on these encodings. Physically realistic rapid alternation of the control fields also approximates evolution in a DFS. Our scheme is scalable in a recently proposed array-based architecture.

[1]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[2]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[3]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[4]  Lorenza Viola,et al.  Implementation of universal control on a decoherence-free qubit , 2002 .

[5]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[6]  Andrew M. Childs,et al.  Universal quantum computation with two-level trapped ions , 2000 .

[7]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[8]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[9]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[10]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[11]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[12]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[14]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[15]  K. B. Whaley,et al.  Encoded universality for generalized anisotropic exchange Hamiltonians , 2002, quant-ph/0204016.

[16]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[17]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[18]  Ralph V. Chamberlin,et al.  Mean-field cluster model for the critical behaviour of ferromagnets , 2000, Nature.

[19]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[20]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[21]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[22]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[23]  M. B. Plenio,et al.  Fast quantum gates for cold trapped ions , 2000, quant-ph/0002092.

[24]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[25]  David P. DiVincenzo,et al.  Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..