Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer.

We present a new fully conjugated diblock copolymer, P3HT-b-PFTBTT, containing donor and acceptor blocks with suitably positioned energy levels for use in a solar cell. This is the first block copolymer to be based on an existing high-performance polymer:polymer blend. We observe phase separation of the blocks and self-assembly behavior. In ternary blends with the respective homopolymers the diblock copolymer introduces lateral nanostructure without restricting P3HT crystallization in the charge transport direction, resulting in standing lamellae. By adding the diblock to the homopolymer blend as a compatibilizer, we prevent phase separation at elevated temperatures and benefit from a dramatic increase in P3HT ordering, allowing us to demonstrate polymer blend photovoltaics where the nanostructure is thermodynamically, rather than kinetically, controlled.

[1]  Benjamin J. Leever,et al.  Synthesis and Characterization of Fully Conjugated Donor–Acceptor–Donor Triblock Copolymers , 2011 .

[2]  B. Sumpter,et al.  High-performance field-effect transistors based on polystyrene-b-poly(3-hexylthiophene) diblock copolymers. , 2011, ACS nano.

[3]  T. Swager,et al.  Poly(3-hexylthiophene)-block-poly(pyridinium phenylene)s: Block Polymers of p- and n-Type Semiconductors , 2011 .

[4]  Kazuhito Hashimoto,et al.  All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. , 2011, Angewandte Chemie.

[5]  R. Friend,et al.  Surface-directed spinodal decomposition in poly[3-hexylthiophene] and C₆₁-butyric acid methyl ester blends. , 2011, ACS nano.

[6]  S. Darling,et al.  Polythiophene-block-polyfluorene and Polythiophene-block-poly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers , 2011 .

[7]  Michael Sommer,et al.  Donor–acceptor block copolymers for photovoltaic applications , 2010 .

[8]  T. Emrick,et al.  Morphology control of a polythiophene–fullerene bulk heterojunction for enhancement of the high-temperature stability of solar cell performance by a new donor–acceptor diblock copolymer , 2010, Nanotechnology.

[9]  Venkat Ganesan,et al.  Correlations between Morphologies and Photovoltaic Properties of Rod−Coil Block Copolymers , 2010 .

[10]  U. Jeng,et al.  Morphologies of Self-Organizing Regioregular Conjugated Polymer/Fullerene Aggregates in Thin Film Solar Cells , 2010 .

[11]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[12]  S. Darling Block copolymers for photovoltaics , 2009 .

[13]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[14]  U. Steiner,et al.  Influence of molecular weight on the solar cell performance of double-crystalline donor-acceptor block copolymers , 2009 .

[15]  C. McNeill,et al.  Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer Blends , 2009 .

[16]  Claire H. Woo,et al.  All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) polymerization. , 2009, Journal of the American Chemical Society.

[17]  U. Scherf,et al.  All-conjugated, rod-rod block copolymers-generation and self-assembly properties. , 2009, Macromolecular rapid communications.

[18]  Sridhar Rajaram,et al.  Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene):Perylene Diimide Solar Cells , 2009 .

[19]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[20]  N. Greenham,et al.  Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. , 2008, The Journal of chemical physics.

[21]  U. Scherf,et al.  All-conjugated block copolymers. , 2008, Accounts of chemical research.

[22]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[23]  Richard H. Friend,et al.  Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes , 2007 .

[24]  P. Twin,et al.  Return of collective rotation in 157Er and 158Er at ultrahigh spin. , 2007, Physical review letters.

[25]  L. Balk,et al.  Conjugated triblock copolymers containing both electron-donor and electron-acceptor blocks , 2006 .

[26]  J. Kroon,et al.  Efficient polymer:polymer bulk heterojunction solar cells , 2006 .

[27]  Jean M. J. Fréchet,et al.  Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells , 2006 .

[28]  D. Neher,et al.  Efficient Polymer Solar Cells Based on M3EH−PPV , 2005 .

[29]  R. Gil,et al.  Experimental evidence for the quasi-living nature of the grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes) , 2005 .

[30]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[31]  L. Leibler,et al.  Block copolymers in tomorrow's plastics , 2005, Nature materials.

[32]  Ting Xu,et al.  Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation , 2004 .

[33]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[34]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[35]  Heinrich M. Jaeger,et al.  Overcoming Interfacial Interactions with Electric Fields , 2000 .

[36]  C. Hawker,et al.  Mixed Lamellar Films: Evolution, Commensurability Effects, and Preferential Defect Formation , 2000 .

[37]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[38]  A. Heeger,et al.  Diffraction Line-Shape Analysis of Poly(3-dodecylthiophene): A Study of Layer Disorder through the Liquid Crystalline Polymer Transition , 1999 .

[39]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.