Silver nanostructure-decorated hierarchical titanium dioxide nanoflowers for SERS and photocatalytic applications

[1]  Doheon Lee,et al.  Highly Adsorptive Au-TiO2 Nanocomposites for the SERS Face Mask Allow the Machine-Learning-Based Quantitative Assay of SARS-CoV-2 in Artificial Breath Aerosols , 2022, ACS applied materials & interfaces.

[2]  Xingzhong Yuan,et al.  Near‐Infrared Light Responsive TiO2 for Efficient Solar Energy Utilization , 2021, Advanced Functional Materials.

[3]  Deniz Kadir Takcı Synthesis, characterization and dielectric properties of rutile TiO2 nanoflowers , 2021, Journal of Crystal Growth.

[4]  Hongmei Liu,et al.  PDMS/TiO2/Ag hybrid substrate with intrinsic signal and clean surface for recyclable and quantitative SERS sensing , 2021, Sensors and Actuators B: Chemical.

[5]  M. Yilmaz,et al.  Fabrication of gold nanostructure decorated polystyrene hybrid nanosystems via poly(L-DOPA) and their applications in surface-enhanced Raman Spectroscopy (SERS), and catalytic activity , 2021 .

[6]  Mehmet Yilmaz,et al.  Silver nanoparticle-decorated titanium dioxide nanowire systems via bioinspired poly(L-DOPA) thin film as a surface-enhanced Raman spectroscopy (SERS) platform, and photocatalyst. , 2021, Physical chemistry chemical physics : PCCP.

[7]  M. Yilmaz,et al.  Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. , 2021, Talanta.

[8]  Yong Yang,et al.  Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection , 2021, Nano-micro letters.

[9]  Yiran Tian,et al.  Quantitative SERS-Based Detection and Elimination of Mixed Hazardous Additives in Food Mediated by the Intrinsic Raman Signal of TiO2 and Magnetic Enrichment , 2020 .

[10]  V. Parale,et al.  Synthesis and Characterizations of 3D TiO 2 Nanoflowers Thin Film: Hydrothermal Method , 2020 .

[11]  S. Parikh,et al.  Black TiO2: A review of its properties and conflicting trends , 2020 .

[12]  M. Yilmaz,et al.  Bimetallic Core–Shell Nanoparticles of Gold and Silver via Bioinspired Polydopamine Layer as Surface-Enhanced Raman Spectroscopy (SERS) Platform , 2020, Nanomaterials.

[13]  Aslı Yilmaz,et al.  The employment of a conformal polydopamine thin layer reduces the cytotoxicity of silver nanoparticles , 2020, TURKISH JOURNAL OF ZOOLOGY.

[14]  Hyung‐Ho Park,et al.  Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity , 2020 .

[15]  Kai Zhang,et al.  Polydopamine-induced fabrication of Ag-TiO2 hollow nanospheres and their application in visible-light photocatalysis , 2020 .

[16]  L. Cai,et al.  Highly Efficient Synthesis of Environmentally Friendly Ag-modified TiO2 Nanoflowers to Enhance Photocatalytic Performance , 2019, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[17]  Zhibo Ma,et al.  Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges , 2019, Advanced materials.

[18]  Wei Sun,et al.  One-step hydrothermal fabrication of three dimensional anatase hierarchical hyacinth-like TiO2 arrays for dye-sensitized solar cells , 2019, Thin Solid Films.

[19]  Xuchuan Jiang,et al.  Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires , 2019, Sensors and Actuators B: Chemical.

[20]  Zhao Yang,et al.  Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity. , 2019, Journal of the American Chemical Society.

[21]  M. Yilmaz Silver-Nanoparticle-Decorated Gold Nanorod Arrays via Bioinspired Polydopamine Coating as Surface-Enhanced Raman Spectroscopy (SERS) Platforms , 2019, Coatings.

[22]  M. Yilmaz 3D and Plasmonic Nanoparticle Decorated Catalytic System via Bio-inspired Polydopamine Coating: Cigar Filter Case Study , 2018, Hacettepe Journal of Biology and Chemistry.

[23]  M. Muneer,et al.  Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light , 2018, Materials Chemistry and Physics.

[24]  Zhao Zhang,et al.  Three-dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor , 2018 .

[25]  M. Yilmaz,et al.  Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms , 2018 .

[26]  Jianji Wang,et al.  Photocatalysis oxidation activity regulation of Ag/TiO 2 composites evaluated by the selective oxidation of Rhodamine B , 2017 .

[27]  Rebecca L. M. Gieseking,et al.  Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. , 2017, Nature materials.

[28]  X. Qi,et al.  Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts. , 2017, ACS applied materials & interfaces.

[29]  Martin Moskovits,et al.  Electromagnetic theories of surface-enhanced Raman spectroscopy. , 2017, Chemical Society reviews.

[30]  Chao Yan,et al.  Controllable Charge Transfer in Ag-TiO2 Composite Structure for SERS Application , 2017, Nanomaterials.

[31]  Yukihiro Ozaki,et al.  Semiconductor-enhanced Raman scattering: active nanomaterials and applications. , 2017, Nanoscale.

[32]  M. Yilmaz,et al.  Understanding the effect of polydopamine coating on catalytic reduction reactions , 2017 .

[33]  E. Liu,et al.  Fabrication and Enhanced Photoactivities of Plasmonic Ag/TiO₂ Nano-Flower Films. , 2017, Journal of nanoscience and nanotechnology.

[34]  Dandan He,et al.  Controllable synthesis of TiO2 nanoflowers and their morphology-dependent photocatalytic activities , 2017 .

[35]  Haijiao Zhang,et al.  Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries , 2016 .

[36]  A. Lamberti,et al.  TiO2 nanotube array as biocompatible electrode in view of implantable supercapacitors , 2016 .

[37]  Guohua Chen,et al.  Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. , 2016, Journal of hazardous materials.

[38]  D. Ding,et al.  Hierarchical photoanode of rutile TiO2 nanorods coupled with anatase TiO2 nanosheets array for photoelectrochemical application , 2016 .

[39]  D. Praveen Kumar,et al.  Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution. , 2016, Journal of colloid and interface science.

[40]  B. Babu,et al.  Facile synthesis of Cu@TiO2 core shell nanowires for efficient photocatalysis , 2016 .

[41]  Wenguang Tu,et al.  Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. , 2016, Nanoscale.

[42]  S. Feng,et al.  Synthesis of blue anatase TiO2 nanoplates with {001} facets and in situ noble metal anchoring , 2016 .

[43]  M. Yilmaz,et al.  The fabrication of plasmonic nanoparticle-containing multilayer films via a bio-inspired polydopamine coating , 2016 .

[44]  A. Facchetti,et al.  Micro‐/Nanostructured Highly Crystalline Organic Semiconductor Films for Surface‐Enhanced Raman Spectroscopy Applications , 2015 .

[45]  Weidong Ruan,et al.  Investigation on SERS of different phase structure TiO2 nanoparticles , 2015 .

[46]  M. Yilmaz,et al.  Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications. , 2014, Journal of materials chemistry. B.

[47]  Mehmet Yilmaz,et al.  Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. , 2014, Physical chemistry chemical physics : PCCP.

[48]  Chang Su Shim,et al.  Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties , 2013, Scientific Reports.

[49]  Zisheng Zhang,et al.  Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance , 2013 .

[50]  Guanglu Ge,et al.  Strongly Coupled Nanorod Vertical Arrays for Plasmonic Sensing , 2013, Advanced materials.

[51]  Alexei A Kornyshev,et al.  Self-assembled nanoparticle arrays for multiphase trace analyte detection. , 2013, Nature materials.

[52]  H. Kominami,et al.  Preparation of Au/TiO2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light , 2013 .

[53]  S. Dou,et al.  Morphology-controllable 1D-3D nanostructured TiO2 bilayer photoanodes for dye-sensitized solar cells. , 2013, Chemical communications.

[54]  B. Su,et al.  Hierarchically Structured Porous Materials for Energy Conversion and Storage , 2012 .

[55]  A. Janotti,et al.  Mechanism of Visible‐Light Photocatalysis in Nitrogen‐Doped TiO2 , 2011, Advanced materials.

[56]  Ismail Hakki Boyaci,et al.  SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. , 2011, The Analyst.

[57]  R. Pollard,et al.  Wavelength Dependence of Raman Enhancement from Gold Nanorod Arrays: Quantitative Experiment and Modeling of a Hot Spot Dominated System , 2010 .

[58]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[59]  Kazuhiko Maeda,et al.  Visible light water splitting using dye-sensitized oxide semiconductors. , 2009, Accounts of chemical research.

[60]  R. Birke,et al.  A unified view of surface-enhanced Raman scattering. , 2009, Accounts of chemical research.

[61]  Baohua Zhang,et al.  Large‐Area Silver‐Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface‐Enhanced Raman Spectroscopy , 2008 .

[62]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[63]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[64]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[65]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[66]  T. Tatsumi,et al.  Preparation of Wormhole-like Mesoporous TiO2 with an Extremely Large Surface Area and Stabilization of Its Surface by Chemical Vapor Deposition , 2002 .

[67]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[68]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[69]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .