A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods

[1]  Z. Weng,et al.  A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods , 2020, Genome Biology.

[2]  Kevin Y Yip,et al.  Reply to ‘Inflated performance measures in enhancer–promoter interaction-prediction methods’ , 2019, Nature Genetics.

[3]  M. Fullwood,et al.  Inflated performance measures in enhancer–promoter interaction-prediction methods , 2019, Nature Genetics.

[4]  Jeff A. Bilmes,et al.  A pitfall for machine learning methods aiming to predict across cell types , 2019, Genome Biology.

[5]  Jacob M. Schreiber,et al.  A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens , 2019, Cell.

[6]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[7]  Michael A. Beer,et al.  Local epigenomic state cannot discriminate interacting and non-interacting enhancer–promoter pairs with high accuracy , 2018, bioRxiv.

[8]  F. A. Kolpakov,et al.  HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis , 2017, Nucleic Acids Res..

[9]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[10]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[11]  Ruochi Zhang,et al.  Exploiting sequence-based features for predicting enhancer–promoter interactions , 2017, Bioinform..

[12]  S. Bicciato,et al.  Comparison of computational methods for Hi-C data analysis , 2017, Nature Methods.

[13]  Doron Lancet,et al.  GeneHancer: genome-wide integration of enhancers and target genes in GeneCards , 2017, Database J. Biol. Databases Curation.

[14]  D. Cohen,et al.  Publisher's Note , 2017, Neuroscience & Biobehavioral Reviews.

[15]  D. Dickel,et al.  Improved regulatory element prediction based on tissue-specific local epigenomic signatures , 2017, Proceedings of the National Academy of Sciences.

[16]  Xiaoman Li,et al.  PETModule: a motif module based approach for enhancer target gene prediction , 2016, Scientific Reports.

[17]  K. Pollard,et al.  Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin , 2016, Nature Genetics.

[18]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[19]  Alireza F. Siahpirani,et al.  A predictive modeling approach for cell line-specific long-range regulatory interactions , 2015, Nucleic acids research.

[20]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[21]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[22]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[23]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[24]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[25]  K. Tan,et al.  Global view of enhancer–promoter interactome in human cells , 2014, Proceedings of the National Academy of Sciences.

[26]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[27]  Boris Lenhard,et al.  Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions , 2013, Genome research.

[28]  Wei Xie,et al.  RFECS: A Random-Forest Based Algorithm for Enhancer Identification from Chromatin State , 2013, PLoS Comput. Biol..

[29]  William Stafford Noble,et al.  Unsupervised pattern discovery in human chromatin structure through genomic segmentation , 2012, Nature Methods.

[30]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[31]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[32]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[33]  S. Batzoglou,et al.  Linking disease associations with regulatory information in the human genome , 2012, Genome research.

[34]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[35]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[36]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[37]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[38]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[39]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[40]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[41]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[42]  B. Oostra,et al.  A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. , 2003, Human molecular genetics.