Unusual geometries in main group chemistry.

Over the past twenty five years, numerous heteroatom-containing analogues of classical organic moieties have been prepared and structurally characterized. The incorporation of group 13 to 15 heteroelements has often been reported to induce significant geometric distortions compared to the corresponding carbon compounds. These unusual geometries in main group derivatives are examined in this tutorial review, and the precise role of the heteroelements is discussed.

[1]  G. Bertrand,et al.  nido-Five-vertex clusters: in and out of boron chemistry. , 2003, Angewandte Chemie.

[2]  W. Saak,et al.  Hexaarylcyclotriplumbane: a molecule with a homonuclear ring system of lead. , 2003, Journal of the American Chemical Society.

[3]  M. Weidenbruch Triple bonds of the heavy main-group elements: acetylene and alkylidyne analogues of group 14. , 2003, Angewandte Chemie.

[4]  W. Massa,et al.  Dianions of tetraboranes(4): puckered aromatic four-membered rings and their reactions with conservation of aromaticity. , 2003, Angewandte Chemie.

[5]  A. Fischer,et al.  The first isolable 2-silenolate. , 2003, Angewandte Chemie.

[6]  P. Power Persistent and stable radicals of the heavier main group elements and related species. , 2003, Chemical reviews.

[7]  T. Iwamoto,et al.  A stable silicon-based allene analogue with a formally sp-hybridized silicon atom , 2003, Nature.

[8]  E. Jemmis,et al.  Stabilization of tricoordinate pyramidal boron: theoretical studies on CBSiH5, BSi2H5, CBGeH5, and CBSnH5. , 2003, Angewandte Chemie.

[9]  M. Nakamoto,et al.  Nearly planar nonsolvated monomeric silyl- and germyllithiums as a result of an intramolecular CH-Li agostic interaction. , 2002, Journal of the American Chemical Society.

[10]  H. Grützmacher,et al.  Odd-electron bonds and biradicals in main group element chemistry. , 2002, Angewandte Chemie.

[11]  W. Massa,et al.  Triboracyclopropanates: two-electron double aromatic compounds with very short B-B distances. , 2002, Angewandte Chemie.

[12]  M. Driess,et al.  As[P(NMe(2))(3)](2)(+) as simultaneous As(I) and P(I) source: synthesis and density function calculations of planar tetracoordinate arsonium and phosphonium ions. , 2002, Angewandte Chemie.

[13]  D. Laird,et al.  Norbornyne: a cycloalkyne reacting like a dicarbene. , 2001, Journal of the American Chemical Society.

[14]  L Nyulászi,et al.  Aromaticity of phosphorus heterocycles. , 2001, Chemical reviews.

[15]  M. Driess,et al.  P(SiiPr3)3: the First Trisilylphosphane Derivative with an almost Planar Three‐Coordinated Phosphorus Atom , 2000 .

[16]  S. G. Nelson,et al.  Lewis Acidity Expressed in Neutral Electron-Rich Aluminum(III) Complexes: An Example of Ligand-Defined Catalysis , 2000 .

[17]  F. Hahn,et al.  Novel 1,2,4-Triphosphole and 1,2,3-Triphosphetene Derivatives fromN,N′-Bis(2,2-dimethylpropyl)benzimidazolin-2-ylidene and Phosphaalkynes , 2000 .

[18]  A. Gunale,et al.  Compounds containing a planar-tetracoordinate carbon atom as analogues of planar methane , 2000 .

[19]  P. Power π-Bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements , 1999 .

[20]  J. F. Nixon,et al.  1-(2,4,6-Tri-tertiarybutylphenyl)-3,5-di-tert-butyl-1,2,4-triphosphole: a possibly stable, fully aromatic, compound with planar tricoordinate phosphorus , 1999 .

[21]  H. Krautscheid,et al.  Bildung und Struktur des iso‐Tetraphosphans P(PtBu2)3: ein Molekül mit einem planaren, dreibindigen P‐Atom , 1999 .

[22]  H. Krautscheid,et al.  Neutral and Cationic Tetracoordinated Aluminum Complexes Featuring Tridentate Nitrogen Donors: Synthesis, Structure, and Catalytic Activity for the Ring-Opening Polymerization of Propylene Oxide and (d,l)-Lactide , 1998 .

[23]  J. F. Nixon,et al.  The First Delocalized Phosphole Containing a Planar Tricoordinate Phosphorus Atom: 1-[Bis(trimethylsilyl)methyl]-3,5-bis(trimethylsilyl)-1,2,4-triphosphole. , 1998, Angewandte Chemie.

[24]  G. Bertrand Ylidic Four π Electron Four-Membered λ5 -Phosphorus Heterocycles: Electronical Isomers of Heterocyclobutadienes. , 1998, Angewandte Chemie.

[25]  O. Guerret,et al.  Trigonal Planar Phosphorus Cations , 1997 .

[26]  H. Grützmacher,et al.  Heteroatom stabilized carbenium ions , 1997 .

[27]  G. Erker,et al.  Compounds Containing Planar‐Tetracoordinate Carbon , 1997 .

[28]  A. Rheingold,et al.  Synthesis and Study of Cyclic π-Systems Containing Silicon and Germanium. The Question of Aromaticity in Cyclopentadienyl Analogues , 1996 .

[29]  L. Nyulászi Pentaphosphole: An Aromatic Ring with a Planar σ3-Phosphorus , 1996 .

[30]  M. Driess,et al.  Main Group Element Analogues of Carbenes, Olefins, and Small Rings , 1996 .

[31]  J. Strutwolf,et al.  The phospha-2-allyl-system: electrochemical and quantum chemical investigations , 1996 .

[32]  H. Schmidbaur,et al.  Synthesis of the gold analogue of the elusive doubly protonated water molecule , 1995, Nature.

[33]  T. Laube X-RAY CRYSTAL STRUCTURES OF CARBOCATIONS STABILIZED BY BRIDGING OR HYPERCONJUGATION , 1995 .

[34]  G. Frenking,et al.  Compounds with Planar Tetracoordinate Boron Atoms: Anti van't Hoff/Le Bel Geometries without Metal Centers , 1995 .

[35]  P. Schleyer,et al.  THEORETICAL AB INITIO STUDY OF NEUTRAL AND CHARGED B3HN (N = 3-9) SPECIES.IMPORTANCE OF AROMATICITY IN DETERMINING THE STRUCTURAL PREFERENCES , 1995 .

[36]  H. Schmidbaur,et al.  Ludwig Mond Lecture. High-carat gold compounds , 1995 .

[37]  R. Jacobson,et al.  AZAALUMINATRANES EXHIBITING UNUSUAL COORDINATION GEOMETRIES FOR ALUMINUM , 1994 .

[38]  H. Jacobsen,et al.  Nonclassical double bonds in ethylene analogs: influence of Pauli repulsion on trans bending and .pi.-bond strength. A density functional study , 1994 .

[39]  A. Laguna,et al.  Aurophilicity at Sulfur Centers: Synthesis and Structure of the Tetragold(I) Species [(Ph3PAu)4S](CF3SO3)2 · 2CH2Cl2 , 1994 .

[40]  P. Pyykkö,et al.  Structure of tetrakis(phosphine)nitrido- or -phosphinidyne or arsinidyneultragold(1+): Td or C4v? , 1993 .

[41]  H. Schmidbaur,et al.  Change of coordination from tetrahedral gold–ammonium to square-pyramidal gold–arsonium cations , 1991, Nature.

[42]  W. Massa,et al.  A Cyclic Methyleneborane with Trapezoidal Geometry , 1991 .

[43]  Richard P. Johnson Strained cyclic cumulenes , 1989 .

[44]  K. B. Wiberg Small ring propellanes , 1989 .

[45]  H. Schumann,et al.  Intramolecularly Stabilized Organogallium Compounds , 1988 .

[46]  G. Trinquier,et al.  Nonclassical distortions at multiple bonds , 1987 .

[47]  David A. Dixon,et al.  The synthesis, structure, and chemistry of 10-Pn-3 systems: tricoordinate hypervalent pnicogen compounds , 1987 .

[48]  A. J. Arduengo,et al.  Direct determination of the barrier to edge inversion at trivalent phosphorus: verification of the edge inversion mechanism , 1986 .

[49]  A. J. Arduengo,et al.  A new inversion process at Group VA (Group 15) elements. Edge inversion through a planar T-shaped structure. , 1986, Journal of the American Chemical Society.

[50]  William A. Goddard,et al.  Relation between singlet-triplet gaps and bond energies , 1986 .

[51]  R. O. Day,et al.  How is Phosphorus Bound in 2‐Phospha‐ and 2‐“Phosphoniaallyl” Cations? , 1985 .

[52]  W. Kutzelnigg Chemical Bonding in Higher Main Group Elements , 1984 .

[53]  J. B. Collins,et al.  Molecular orbital study of tetrahedral, planar, and pyramidal structures of the isoelectronic series BH4-, CH4, NH4+, AlH4-, SiH4, and PH4+ , 1980 .

[54]  R. S. Mulliken Structures of the Halogen Molecules and the Strength of Single Bonds1 , 1955 .

[55]  Kenneth S. Pitzer,et al.  Repulsive Forces in Relation to Bond Energies, Distances and Other Properties , 1948 .