Estimation of Damped Sinusoidal Signals: an Observer-Based Approach

Abstract This paper presents a novel observer-based method for estimating the parameters of an exponentially damped sinusoid, including the frequency, amplitude, phase and the damping factor. A second-order sliding-mode-based adaptation law is designed for estimating the frequency and the damping factor, while amplitude and phase are obtainable from the said parameters by straightforward algebra. The stability and robustness analysis in presence of an additive disturbance proves the existence of a tuning parameter set for which the estimator’s dynamics are asymptotic stable and the estimation error asymptotically converges to a residual set whose size depends on the amplitude of the disturbance. Numerical and comparative examples show the effectiveness of the proposed estimation approach.

[1]  J. F. Hauer,et al.  Application of Prony analysis to the determination of modal content and equivalent models for measured power system response , 1991 .

[2]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  Alireza R. Bakhshai,et al.  An adaptive notch filter for frequency estimation of a periodic signal , 2004, IEEE Transactions on Automatic Control.

[4]  Mohsen Mojiri,et al.  Estimation of Electromechanical Oscillations From Phasor Measurements Using Second-Order Generalized Integrator , 2015, IEEE Transactions on Instrumentation and Measurement.

[5]  R.J. Koessler,et al.  Analysis of Oscillations with Eigenanalysis and Prony Techniques , 2007, 2007 IEEE Power Engineering Society General Meeting.

[6]  Ming Hou,et al.  Parameter Identification of Sinusoids , 2012, IEEE Transactions on Automatic Control.

[7]  José Antonio de la O. Serna,et al.  Synchrophasor Estimation Using Prony's Method , 2013, IEEE Transactions on Instrumentation and Measurement.

[8]  Geoffrey Ye Li,et al.  A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation , 1997, IEEE Trans. Signal Process..

[9]  Jin Lu,et al.  Identification of Exponentially Damped Sinusoidal Signals , 2008 .

[10]  Maria D. Miranda,et al.  Algebraic parameter estimation of damped exponentials , 2007, 2007 15th European Signal Processing Conference.

[11]  Biqing Wu,et al.  A magnitude/phase-locked loop approach to parameter estimation of periodic signals , 2003, IEEE Trans. Autom. Control..

[12]  Gordon K. Smyth,et al.  A Modified Prony Algorithm for Exponential Function Fitting , 1995, SIAM J. Sci. Comput..