Finite generation and continuity of topological Hochschild and cyclic homology

The goal of this paper is to establish fundamental properties of the Hochschild, topological Hochschild, and topological cyclic homologies of commutative, Noetherian rings, which are assumed only to be F-finite in the majority of our results. This mild hypothesis is satisfied in all cases of interest in finite and mixed characteristic algebraic geometry. We prove firstly that the topological Hochschild homology groups, and the homotopy groups of the fixed point spectra $TR^r$, are finitely generated modules. We use this to establish the continuity of these homology theories for any given ideal. A consequence of such continuity results is the pro Hochschild-Kostant-Rosenberg theorem for topological Hochschild and cyclic homology. Finally, we show more generally that the aforementioned finite generation and continuity properties remain true for any proper scheme over such a ring.

[1]  M. Morrow A case of the deformational Hodge conjecture via a pro Hochschild–Kostant–Rosenberg theorem , 2013, 1310.1900.

[2]  M. Morrow PRO CDH-DESCENT FOR CYCLIC HOMOLOGY AND $K$-THEORY , 2012, Journal of the Institute of Mathematics of Jussieu.

[3]  H. Esnault,et al.  Deformation of algebraic cycle classes in characteristic zero , 2013, 1310.1773.

[4]  Bjørn Ian Dundas,et al.  The Local Structure of Algebraic K-Theory , 2012 .

[5]  A. Krishna An Artin-Rees theorem in -theory and applications to zero cycles , 2010 .

[6]  L. Hesselholt The big de Rham–Witt complex , 2010, 1006.3125.

[7]  C. Weibel,et al.  Infinitesimal cohomology and the Chern character to negative cyclic homology , 2007, math/0703133.

[8]  Kay Rülling The generalized de Rham-Witt complex over a field is a complex of zero-cycles , 2007 .

[9]  Stewart Priddy,et al.  The problem session , 2007 .

[10]  L. Hesselholt,et al.  On the K-theory of complete regular local Fp-algebras , 2006 .

[11]  L. Hesselholt On the p-typical curves in Quillen's K-theory , 2006 .

[12]  L. Hesselholt,et al.  On the $K$-theory and topological cyclic homology of smooth schemes over a discrete valuation ring , 2004 .

[13]  L. Hesselholt,et al.  Bi-relative algebraic K-theory and topological cyclic homology , 2004, math/0409122.

[14]  T. Zink,et al.  DE RHAM–WITT COHOMOLOGY FOR A PROPER AND SMOOTH MORPHISM , 2004, Journal of the Institute of Mathematics of Jussieu.

[15]  I. Madsen,et al.  On the K-theory of nilpotent endomorphisms , 2003 .

[16]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[17]  M. Brun Topological Hochschild homology of Z/pn , 2000 .

[18]  Ib Madsen,et al.  On the K-theory of local fields , 1999, math/9910186.

[19]  B. Dundas CONTINUITY OF K-THEORY : AN EXAMPLE IN EQUAL CHARACTERISTICS , 1998 .

[20]  R. McCarthy Relative algebraic K-theory and topological cyclic homology , 1997 .

[21]  Ib Madsen,et al.  On the K-theory of finite algebras over witt vectors of perfect fields , 1997 .

[22]  C. Weibel Cyclic homology for schemes , 1996 .

[23]  Maria O. Ronco On the hochschild homology decompositions , 1993 .

[24]  Z. Fiedorowicz,et al.  MacLane homology and topological Hochschild homology , 1992 .

[25]  Sletsjoe,et al.  Base Change Transitivity and Künneth Formulas for the Quillen Decomposition of Hochschild Homology. , 1992 .

[26]  C. Weibel,et al.  Étale descent for hochschild and cyclic homology , 1991 .

[27]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[28]  D. Popescu General Néron desingularization and approximation , 1986, Nagoya Mathematical Journal.

[29]  Dorin Popescu,et al.  General Néron desingularization , 1985, Nagoya Mathematical Journal.

[30]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[31]  E. Kunz ON NOETHERIAN RINGS OF CHARACTERISTIC p. , 1976 .

[32]  M. André Homologie des algèbres commutatives , 1974 .

[33]  T. Willmore Algebraic Geometry , 1973, Nature.

[34]  D. Quillen On the (co)homology of commutative rings , 1970 .

[35]  Alexander Grothendieck,et al.  Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents , 1961 .

[36]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .

[37]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .