Optimal-observer design for linear dynamical systems with uncertain parameters

This paper presents a design technique for the synthesis of robust observers for linear dynamical systems with uncertain parameters. The perturbations under consideration are modelled as unknown but bounded disturbances and an ellipsoidal set-theoretic approach is used to formulate the optimal-observer design problem. The optimal criterion introduced here is the minimization of the ‘size’ of the bounding ellipsoid of the estimation error. A necessary and sufficient condition for this optimal design problem is presented. The results are stated in terms of a reduced-order observer with constant gain matrix, which is then determined by solving a matrix Riccati-type equation. Furthermore, a gradient-search algorithm is presented to find the optimal solution when the free parameter that enters in the construction of the bounding ellipsoids of the estimation error is considered as a design parameter. The effectiveness of the proposed approach is illustrated through a numerical example.