Time reversal, or phase-conjugation, refocuses energy back to a probe source location despite the complexity of the propagation channel. A probe source pulse is transmitted and a complicated multipath signal is measured by an array of source/receiver elements. The signal is time reversed and retransmitted into the ocean. The time-reversal process recombines this temporal multipath at the original probe source range and depth. The ability of time reversal to reduce dispersion and its simplicity of implementation makes it ideal for underwater acoustic communications, which must mitigate the inter-symbol interference caused by the time-varying multipath dispersion. Furthermore, time reversal focuses energy at the desired depth, thus mitigating the effects of channel fading. An experiment was conducted in June 2000 demonstrating that the time-reversal process recombined the temporal multipath resulting in reduced bit errors for communication. Communication sequences were transmitted over a distance of 10 km both in range independent and range dependent environments north of Elba Island, Italy. The range independent transmissions were made in 110-m deep water and the range dependent transmissions were made upslope from 110-m deep water into 40-m deep water. Single source transmissions were also measured in the same channels. Quantitative bit error results are shown for BPSK (binary phase shift keying) and QPSK (quadrature phase shift keying).