暂无分享,去创建一个
[1] Alberto Arri. The F5 criterion revised , 2009, ACCA.
[2] Jean-Charles Faugère,et al. Parallel Gaussian elimination for Gröbner bases computations in finite fields , 2010, PASCO.
[3] Dingkang Wang,et al. A new proof for the correctness of the F5 algorithm , 2013 .
[4] Christian Eder,et al. Improving incremental signature-based Gröbner basis algorithms , 2012, ACCA.
[5] A. I. Zobnin. Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.
[6] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[7] Rüdiger Gebauer,et al. Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.
[8] Yao Sun,et al. A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.
[9] Christian Eder. Signature-based algorithms to compute standard bases , 2012 .
[10] Yao Sun,et al. Solving Detachability Problem for the Polynomial Ring by Signature-based Groebner Basis Algorithms , 2011, ArXiv.
[11] Carlo Traverso,et al. Gröbner bases computation using syzygies , 1992, ISSAC '92.
[12] Amir Hashemi,et al. On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases , 2013, Programming and Computer Software.
[13] Maria Grazia Marinari,et al. Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.
[14] Yang Zhang,et al. A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras , 2012, ISSAC.
[15] Amir Hashemi,et al. Extended F5 criteria , 2010, J. Symb. Comput..
[16] Antoine Joux,et al. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.
[17] Yupu Hu,et al. The termination of the F5 algorithm revisited , 2013, ISSAC '13.
[18] Bjarke Hammersholt Roune,et al. Practical Gröbner basis computation , 2012, ISSAC.
[19] Christian Eder,et al. On The Criteria Of The F5 Algorithm , 2008, 0804.2033.
[20] Lei Huang,et al. A new conception for computing gröbner basis and its applications , 2010, ArXiv.
[21] Yao Sun,et al. A New Proof for the Correctness of F5 (F5-Like) Algorithm , 2010, 1004.0084.
[22] Shuhong Gao,et al. A New Algorithm for Computing Grobner Bases , 2010 .
[23] Carlo Traverso,et al. “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.
[24] Christian Eder,et al. F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..
[25] Till Stegers,et al. Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..
[26] Yao Sun,et al. The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..
[27] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[28] Shuhong Gao,et al. A new incremental algorithm for computing Groebner bases , 2010, ISSAC.
[29] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .
[30] Vasily Galkin,et al. Termination of Original F5 , 2012, 1203.2402.
[31] Christian Eder,et al. Modifying Faug\`ere's F5 Algorithm to ensure termination , 2010, 1006.0318.
[32] Wang Dingkang. BRANCH GROBNER BASES ALGORITHM OVER BOOLEAN RING , 2009 .
[33] Christian Eder,et al. Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.
[34] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[35] Michael Brickenstein,et al. PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials , 2009, J. Symb. Comput..
[36] Adi Shamir,et al. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.
[37] Christian Eder,et al. An analysis of inhomogeneous signature-based Gröbner basis computations , 2012, J. Symb. Comput..