Signature-Based Gröbner Basis Algorithms - Extended MMM Algorithm for computing Gröbner bases

Signature-based algorithms is a popular kind of algorithms for computing Gr\"obner bases, and many related papers have been published recently. In this paper, no new signature-based algorithms and no new proofs are presented. Instead, a view of signature-based algorithms is given, that is, signature-based algorithms can be regarded as an extended version of the famous MMM algorithm. By this view, this paper aims to give an easier way to understand signature-based Gr\"obner basis algorithms.

[1]  Alberto Arri The F5 criterion revised , 2009, ACCA.

[2]  Jean-Charles Faugère,et al.  Parallel Gaussian elimination for Gröbner bases computations in finite fields , 2010, PASCO.

[3]  Dingkang Wang,et al.  A new proof for the correctness of the F5 algorithm , 2013 .

[4]  Christian Eder,et al.  Improving incremental signature-based Gröbner basis algorithms , 2012, ACCA.

[5]  A. I. Zobnin Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.

[6]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[7]  Rüdiger Gebauer,et al.  Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.

[8]  Yao Sun,et al.  A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.

[9]  Christian Eder Signature-based algorithms to compute standard bases , 2012 .

[10]  Yao Sun,et al.  Solving Detachability Problem for the Polynomial Ring by Signature-based Groebner Basis Algorithms , 2011, ArXiv.

[11]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[12]  Amir Hashemi,et al.  On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases , 2013, Programming and Computer Software.

[13]  Maria Grazia Marinari,et al.  Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.

[14]  Yang Zhang,et al.  A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras , 2012, ISSAC.

[15]  Amir Hashemi,et al.  Extended F5 criteria , 2010, J. Symb. Comput..

[16]  Antoine Joux,et al.  Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.

[17]  Yupu Hu,et al.  The termination of the F5 algorithm revisited , 2013, ISSAC '13.

[18]  Bjarke Hammersholt Roune,et al.  Practical Gröbner basis computation , 2012, ISSAC.

[19]  Christian Eder,et al.  On The Criteria Of The F5 Algorithm , 2008, 0804.2033.

[20]  Lei Huang,et al.  A new conception for computing gröbner basis and its applications , 2010, ArXiv.

[21]  Yao Sun,et al.  A New Proof for the Correctness of F5 (F5-Like) Algorithm , 2010, 1004.0084.

[22]  Shuhong Gao,et al.  A New Algorithm for Computing Grobner Bases , 2010 .

[23]  Carlo Traverso,et al.  “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.

[24]  Christian Eder,et al.  F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..

[25]  Till Stegers,et al.  Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..

[26]  Yao Sun,et al.  The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..

[27]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[28]  Shuhong Gao,et al.  A new incremental algorithm for computing Groebner bases , 2010, ISSAC.

[29]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[30]  Vasily Galkin,et al.  Termination of Original F5 , 2012, 1203.2402.

[31]  Christian Eder,et al.  Modifying Faug\`ere's F5 Algorithm to ensure termination , 2010, 1006.0318.

[32]  Wang Dingkang BRANCH GROBNER BASES ALGORITHM OVER BOOLEAN RING , 2009 .

[33]  Christian Eder,et al.  Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.

[34]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[35]  Michael Brickenstein,et al.  PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials , 2009, J. Symb. Comput..

[36]  Adi Shamir,et al.  Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations , 2000, EUROCRYPT.

[37]  Christian Eder,et al.  An analysis of inhomogeneous signature-based Gröbner basis computations , 2012, J. Symb. Comput..