Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales

Using a nonstandard version of the principle of virtual power, we develop general balance equations and boundary conditions for second-grade materials. Our results apply to both solids and fluids as they are independent of constitutive equations. As an application of our results, we discuss flows of incompressible fluids at small-length scales. In addition to giving a generalization of the Navier–Stokes equations involving higher-order spatial derivatives, our theory provides conditions on free and fixed boundaries. The free boundary conditions involve the curvature of the free surface; among the conditions for a fixed boundary are generalized adherence and slip conditions, each of which involves a material length scale. We reconsider the classical problem of plane Poiseuille flow for generalized adherence and slip conditions.

[1]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[2]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[3]  Albert Mosyak,et al.  Fluid flow in micro-channels , 2005 .

[4]  Billy D. Todd,et al.  DEPARTURE FROM NAVIER-STOKES HYDRODYNAMICS IN CONFINED LIQUIDS , 1997 .

[5]  Keith E. Gubbins,et al.  Poiseuille flow of Lennard-Jones fluids in narrow slit pores , 2000 .

[6]  P. Voorhees,et al.  Evolution of material voids for highly anisotropic surface energy , 2004 .

[7]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[8]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[9]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[10]  R. Toupin Elastic materials with couple-stresses , 1962 .

[11]  P. Podio-Guidugli,et al.  Contact interactions, stress and material symmetry , 2002 .

[12]  Dongqing Li,et al.  Heat transfer for water flow in trapezoidal silicon microchannels , 2000 .

[13]  J. Welty,et al.  Pressure Drop Measurements in a Microchannel , 1998, Micro-Electro-Mechanical Systems (MEMS).

[14]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[15]  Han Gardeniers,et al.  Micro- and nanofluidic devices for environmental and biomedical applications , 2004 .

[16]  P. Podio-Guidugli Inertia and invariance , 1997 .

[17]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[18]  G. Mala,et al.  Pressure-driven water flows in trapezoidal silicon microchannels , 2000 .

[19]  Allen T. Chwang,et al.  Molecular Dynamics Simulations of Nanochannel Flows at Low Reynolds Numbers , 2003, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[20]  G. Peterson,et al.  Convective heat transfer and flow friction for water flow in microchannel structures , 1996 .

[21]  John E. Osborn,et al.  The principle of virtual work and integral laws of motion , 1979 .

[22]  J. Tersoff,et al.  Prepyramid-to-pyramid transition of SiGe islands on Si(001) , 2003 .

[23]  S. Kandlikar,et al.  Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes , 2003 .

[24]  Nicolas Minc,et al.  Microfluidique et applications biologiques : enjeux et tendances , 2004 .

[25]  Conyers Herring,et al.  Surface Tension as a Motivation for Sintering , 1999 .

[26]  Joel Koplik,et al.  Continuum Deductions from Molecular Hydrodynamics , 1997 .

[27]  Morton E. Gurtin,et al.  Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.

[28]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[29]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[30]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[31]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[32]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[33]  Klavs Jensen,et al.  Chemical kinetics: Smaller, faster chemistry , 1998, Nature.

[34]  Morton E. Gurtin,et al.  A regularized equation for anisotropic motion-by-curvature , 1992 .

[35]  Susan A. Somers,et al.  Microscopic dynamics of flow in molecularly narrow pores , 1990 .

[36]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[37]  J. Sturm,et al.  Micro- and nanofluidics for DNA analysis , 2004, Analytical and bioanalytical chemistry.

[38]  Dongqing Li,et al.  Flow characteristics of water in microtubes , 1999 .

[39]  D. J. Phares,et al.  A study of laminar flow of polar liquids through circular microtubes , 2004 .

[40]  R. Adrian,et al.  Transition from laminar to turbulent flow in liquid filled microtubes , 2004 .

[41]  Zhi-Xin Li,et al.  EXPERIMENTAL STUDY ON FLOW CHARACTERISTICS OF LIQUID IN CIRCULAR MICROTUBES , 2003 .

[42]  H. Stone,et al.  Microfluidics: Basic issues, applications, and challenges , 2001 .

[43]  S. Hsieh,et al.  Liquid flow in a micro-channel , 2006 .

[44]  Hisashi Okumura,et al.  Comparisons between molecular dynamics and hydrodynamics treatment of nonstationary thermal processes in a liquid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.