Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally

[1]  W. Bond,et al.  Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver , 2012 .

[2]  S. Levin,et al.  The Global Extent and Determinants of Savanna and Forest as Alternative Biome States , 2011, Science.

[3]  M. Scheffer,et al.  Global Resilience of Tropical Forest and Savanna to Critical Transitions , 2011, Science.

[4]  T. Lenton Early warning of climate tipping points , 2011 .

[5]  I. Prentice,et al.  Global vegetation and terrestrial carbon cycle changes after the last ice age. , 2011, The New phytologist.

[6]  Wolfgang Lucht,et al.  Estimating the risk of Amazonian forest dieback. , 2010, The New phytologist.

[7]  D. Bowman,et al.  Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics? , 2010, Landscape Ecology.

[8]  W. Bond,et al.  Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? , 2010 .

[9]  L. Aragão,et al.  Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest , 2009, Proceedings of the National Academy of Sciences.

[10]  W. Bond,et al.  Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. , 2009 .

[11]  S. Higgins,et al.  Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach , 2009 .

[12]  William J. Bond,et al.  What Limits Trees in C4 Grasslands and Savannas , 2008 .

[13]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[14]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[15]  S. Higgins,et al.  Partitioning of Root and Shoot Competition and the Stability of Savannas , 2007, The American Naturalist.

[16]  S. Lavorel,et al.  Terrestrial Ecosystems in a Changing World , 2007 .

[17]  Yi Wang,et al.  On the cause of abrupt vegetation collapse in North Africa during the Holocene: Climate variability vs. vegetation feedback , 2006 .

[18]  E. Roeckner IPCC DDC AR4 ECHAM5/MPI-OM SRESB1 run1 , 2005 .

[19]  R. Betts,et al.  Amazonian forest dieback under climate-carbon cycle projections for the 21st century , 2004 .

[20]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[21]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[22]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[23]  S. Carpenter,et al.  Ecological forecasts: an emerging imperative. , 2001, Science.

[24]  Guy F. Midgley,et al.  A proposed CO2‐controlled mechanism of woody plant invasion in grasslands and savannas , 2000 .

[25]  S. Higgins,et al.  Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna , 2000 .

[26]  R. Scholes,et al.  Tree-grass interactions in Savannas , 1997 .

[27]  J. Ehleringer,et al.  C4 photosynthesis, atmospheric CO2, and climate , 1997, Oecologia.

[28]  B. Drake,et al.  MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? , 1997, Annual review of plant physiology and plant molecular biology.

[29]  Stephen R. Carpenter,et al.  Resilience and Resistance of a Lake Phosphorus Cycle Before and After Food Web Manipulation , 1992, The American Naturalist.

[30]  D. Mueller‐Dombois,et al.  Ecology of Tropical and Subtropical Vegetation. , 1972 .