General and Fractional Hypertree Decompositions: Hard and Easy Cases

Hypertree decompositions, as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHD) are hypergraph decomposition methods successfully used for answering conjunctive queries and for the solution of constraint satisfaction problems. Every hypergraph H has a width relative to each of these methods: its hypertree width hw(H), its generalized hypertree width ghw(H), and its fractional hypertree width fhw(H), respectively. It is known that hw(H) ≤ k can be checked in polynomial time for fixed k, while checking ghw(H) ≤ k is NP-complete for k >= 3. The complexity of checking fhw(H) ≤ k for a fixed k has been open for over a decade. We settle this open problem by showing that checking fhw(H) ≤ k is NP-complete, even for k=2. The same construction allows us to prove also the NP-completeness of checking ghw(H) ≤ k for k=2. After proving these results, we identify meaningful restrictions, for which checking for bounded ghw or fhw becomes tractable.

[1]  Stefan Woltran,et al.  The Impact of Treewidth on ASP Grounding and Solving , 2017, IJCAI.

[2]  Jakub Závodný,et al.  Size Bounds for Factorised Representations of Query Results , 2015, TODS.

[3]  Abdelmounaam Rezgui,et al.  SNRNeg: A social network enabled negotiation service , 2016, Inf. Sci..

[4]  Georg Gottlob,et al.  Decomposing combinatorial auctions and set packing problems , 2013, J. ACM.

[5]  Anand Rajaraman,et al.  Conjunctive query containment revisited , 1997, Theor. Comput. Sci..

[6]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[7]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[8]  Thomas Schwentick,et al.  When is the evaluation of conjunctive queries tractable? , 2001, STOC '01.

[9]  Ronald Fagin,et al.  Data exchange: semantics and query answering , 2003, Theor. Comput. Sci..

[10]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[11]  Marc Gyssens,et al.  Decomposing Constraint Satisfaction Problems Using Database Techniques , 1994, Artif. Intell..

[12]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[13]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[14]  Kunle Olukotun,et al.  EmptyHeaded: A Relational Engine for Graph Processing , 2015, ACM Trans. Database Syst..

[15]  Emir Pasalic,et al.  Design and Implementation of the LogicBlox System , 2015, SIGMOD Conference.

[16]  Georg Gottlob,et al.  HyperBench: A Benchmark and Tool for Hypergraphs and Empirical Findings , 2018, AMW.

[17]  Paul Seymour,et al.  Bounding the vertex cover number of a hypergraph , 1994, Comb..

[18]  Francesco Scarcello,et al.  Weighted hypertree decompositions and optimal query plans , 2004, PODS '04.

[19]  Isolde Adler,et al.  Marshals, monotone marshals, and hypertree‐width , 2004, J. Graph Theory.

[20]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[21]  P. Assouad Densité et dimension , 1983 .

[22]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[23]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[24]  Christopher Ré,et al.  DunceCap: Query Plans Using Generalized Hypertree Decompositions , 2015, SIGMOD Conference.

[25]  Andrea Calì,et al.  Taming the Infinite Chase: Query Answering under Expressive Relational Constraints , 2008, Description Logics.

[26]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[27]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, PODS '99.

[28]  Emanuel Sallinger,et al.  Combined Complexity of Repair Checking and Consistent Query Answering , 2014, AMW.

[29]  Tim Furche,et al.  Data Wrangling for Big Data: Towards a Lingua Franca for Data Wrangling , 2016, AMW.

[30]  Ruslan R. Fayzrakhmanov,et al.  OXPath-Based Data Acquisition for dblp , 2017, 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).

[31]  Thomas Schwentick,et al.  Generalized hypertree decompositions: np-hardness and tractable variants , 2007, PODS '07.

[32]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[33]  Dániel Marx,et al.  Size Bounds and Query Plans for Relational Joins , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Christopher Ré,et al.  GYM: A Multiround Join Algorithm In MapReduce , 2014, ArXiv.

[35]  Ayumi Shinohara Complexity of Computing Vapnik-Chervonenkis Dimension and Some Generalized Dimensions , 1995, Theor. Comput. Sci..

[36]  Zoltán Füredi,et al.  On the Fractional Covering Number of Hypergraphs , 1988, SIAM J. Discret. Math..

[37]  Dániel Marx,et al.  Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.

[38]  Jakub Závodný,et al.  Aggregation and Ordering in Factorised Databases , 2013, Proc. VLDB Endow..

[39]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[40]  Hubie Chen,et al.  Beyond Hypertree Width: Decomposition Methods Without Decompositions , 2005, CP.

[41]  Atri Rudra,et al.  FAQ: Questions Asked Frequently , 2015, PODS.

[42]  Georg Gottlob,et al.  Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width , 2001, PODS '01.

[43]  Dániel Marx,et al.  Approximating fractional hypertree width , 2009, TALG.

[44]  Emanuel Sallinger,et al.  Winner Determination in Huge Elections with MapReduce , 2017, AAAI.

[45]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[46]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[47]  Viktor Leis,et al.  How Good Are Query Optimizers, Really? , 2015, Proc. VLDB Endow..

[48]  Dániel Marx Tractable Structures for Constraint Satisfaction with Truth Tables , 2009, Theory of Computing Systems.

[49]  Dániel Marx,et al.  Constraint solving via fractional edge covers , 2006, SODA '06.

[50]  Atri Rudra,et al.  Joins via Geometric Resolutions: Worst-case and Beyond , 2014, PODS.

[51]  Nikolaus Augsten,et al.  Efficient Computation of the Tree Edit Distance , 2015, TODS.

[52]  Luigi Bellomarini,et al.  Swift Logic for Big Data and Knowledge Graphs - Overview of Requirements, Language, and System , 2017, SOFSEM.

[53]  Wim Martens,et al.  An analytical study of large SPARQL query logs , 2017, VLDB 2017.

[54]  Siamak Tazari,et al.  Computing hypergraph width measures exactly , 2011, Inf. Process. Lett..

[55]  Marc Gyssens,et al.  A Decomposition Methodology for Cyclic Databases , 1982, Advances in Data Base Theory.

[56]  René van Bevern,et al.  Myhill–Nerode Methods for Hypergraphs , 2015, Algorithmica.

[57]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[58]  Ronald Fagin,et al.  Degrees of acyclicity for hypergraphs and relational database schemes , 1983, JACM.

[59]  Georg Gottlob,et al.  Hypertree width and related hypergraph invariants , 2007, Eur. J. Comb..

[60]  Zoltán Füredi,et al.  Matchings and covers in hypergraphs , 1988, Graphs Comb..

[61]  Kunle Olukotun,et al.  Old techniques for new join algorithms: A case study in RDF processing , 2016, 2016 IEEE 32nd International Conference on Data Engineering Workshops (ICDEW).

[62]  Marc Gyssens,et al.  A unified theory of structural tractability for constraint satisfaction problems , 2008, J. Comput. Syst. Sci..

[63]  Luigi Bellomarini,et al.  The Vadalog System: Datalog-based Reasoning for Knowledge Graphs , 2018, Proc. VLDB Endow..

[64]  Wim Martens,et al.  An analytical study of large SPARQL query logs , 2017, The VLDB Journal.