An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field

The theory of explicitly time‐dependent invariants is developed for quantum systems whose Hamiltonians are explicitly time dependent. The central feature of the discussion is the derivation of a simple relation between eigenstates of such an invariant and solutions of the Schrodinger equation. As a specific well‐posed application of the general theory, the case of a general Hamiltonian which settles into constant operators in the sufficiently remote past and future is treated and, in particular, the transition amplitude connecting any initial state in the remote past to any final state in the remote future is calculated in terms of eigenstates of the invariant. Two special physical systems are treated in detail: an arbitrarily time‐dependent harmonic oscillator and a charged particle moving in the classical, axially symmetric electromagnetic field consisting of an arbitrarily time‐dependent, uniform magnetic field, the associated induced electric field, and the electric field due to an arbitrarily time‐de...