Introduction: 1D Nanomaterials/Nanowires.

Wires of different forms have been an integral part of human society for centuries. Electricity is being delivered through powerlines to every household; information is routinely transmitted through optical fibers, and bridge-building requires the use of mechanically robust cables. In the past 25 years, scientists have discovered a fundamentally new process for making nanoscopic wires, 1000 times thinner than human hairs, enabling a new generation of computing, integrated photonics, energy and biomedical technologies.

[1]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[2]  Jinyao Tang,et al.  Solution-processed core-shell nanowires for efficient photovoltaic cells. , 2011, Nature nanotechnology.

[3]  B. Liu,et al.  A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. , 2013, Nano letters.

[4]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[5]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[6]  C. Ning,et al.  Semiconductor nanowire lasers , 2016 .

[7]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[8]  Peidong Yang,et al.  Interfacing silicon nanowires with mammalian cells. , 2007, Journal of the American Chemical Society.

[9]  Charles M. Lieber,et al.  Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities , 1996, Science.

[10]  Christopher J. Chang,et al.  Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. , 2015, Nano letters.

[11]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[12]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[13]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[14]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[15]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[16]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[17]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[18]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[19]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[20]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[21]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[22]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[23]  Peidong Yang,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[24]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[25]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[26]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[27]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[28]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[29]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[30]  P. Yang,et al.  Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics , 2002 .