Algorithms for Supercomputers

Better numerical procedures, improved computational power and additional physical insights have contributed significantly to progress in dealing with classical and quantum statistical mechanics problems. Past developments are discussed and future possibilities outlined.

[1]  H. Mori A Continued-Fraction Representation of the Time-Correlation Functions , 1965 .

[2]  B. Alder,et al.  Validity of Macroscopic Concepts for Fluids on a Microscopic Scale , 1981 .

[3]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[4]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[5]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[6]  D. Thouless Exchange in solid 3He and the Heisenberg Hamiltonian , 1965 .

[7]  David M. Ceperley,et al.  Quantum Monte Carlo for molecules: Green’s function and nodal release , 1984 .

[8]  B. H. Wells The differential Green's function Monte Carlo method. The dipole moment of LiH , 1985 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[11]  Peter Reynolds,et al.  Quantum Monte Carlo calculation of the singlet–triplet splitting in methylene , 1985 .

[12]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[13]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[14]  Ralph E. Christoffersen,et al.  Algorithms for Chemical Computations , 1977 .

[15]  B. Alder,et al.  Radial Distribution Function Calculated by the Monte‐Carlo Method for a Hard Sphere Fluid , 1955 .

[16]  M. Rao,et al.  On the force bias Monte Carlo simulation of simple liquids , 1979 .

[17]  William H. Miller,et al.  Quantum mechanical rate constants for bimolecular reactions , 1983 .