LiDAR-derived slopes for headwater channel network analysis

Abstract Slope is one of the most important distinguishing features for channel morphology. Variations in the computation of slope from a digital elevation model can affect a wide range of hydrogeomorphically derived applications. We compare different methods for computing channel slope using LiDAR-derived digital terrain models (DTMs) with varying resolutions. We chose a headwater basin of the Eastern Italian Alps, characterized by a dense ephemeral colluvial network and a main alluvial channel as our study area. The identified alluvial morphologies are characteristic of steep mountain streams, namely, cascades and step pools. Field surveys were carried out along the main channel and in some small tributaries. Results indicate that a single method for slope calculation cannot estimate channel slope at the hydrographic network scale. The differential geometry approach for slope calculation tends to overestimate field-surveyed channel slope values for all the DTM resolutions (1, 2, 5 m). When a trigonometric approach for slope calculation is applied, 2 and 5 m DTM resolutions give more consistent results. Nevertheless, a reliable channel slope can be derived from a DTM with an appropriate resolution by choosing a suitable method only after considering the channel width.

[1]  Matthew G. Hohmann,et al.  An evaluation of methods to determine slope using digital elevation data , 2004 .

[2]  D. Montgomery,et al.  Downstream coarsening in headwater channels , 2002 .

[3]  K. Kraus,et al.  ADVANCED DTM GENERATION FROM LIDAR DATA , 2001 .

[4]  K. Jones A comparison of algorithms used to compute hill slope as a property of the DEM , 1998 .

[5]  Diane M. McKnight,et al.  Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids , 2003 .

[6]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[7]  D. Montgomery,et al.  Channel-reach morphology in mountain drainage basins , 1997 .

[8]  D. Staley,et al.  Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data , 2006 .

[9]  Menno-Jan Kraak,et al.  Principles of geographic information systems : an introductory textbook , 2000 .

[10]  Ian D. Moore,et al.  Terrain analysis : integration into the agricultural nonpoint source (AGNPS) pollution model , 1991 .

[11]  Kevin J. McMaster Effects of digital elevation model resolution on derived stream network positions , 2002 .

[12]  F. Ackermann Airborne laser scanning : present status and future expectations , 1999 .

[13]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[14]  David G. Tarboton,et al.  A New Method for Determination of Most Likely Landslide Initiation Points and the Evaluation of Digital Terrain Model Scale in Terrain Stability Mapping , 2006 .

[15]  G. Heuvelink,et al.  DEM resolution effects on shallow landslide hazard and soil redistribution modelling , 2005 .

[16]  C. Briese Breakline Modelling from Airborne Laser Scanner Data , 2004 .

[17]  Jochen Aberle,et al.  Measurement and analysis of alluvial bed roughness , 2004 .

[18]  Susan K. Jenson,et al.  Applications of hydrologic information automatically extracted from digital elevation models , 1991 .

[19]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[20]  M. Hutchinson,et al.  Digital terrain analysis. , 2008 .

[21]  Vincenzo D'Agostino,et al.  Bankfull width and morphological units in an alpine stream of the dolomites (Northern Italy) , 2007 .

[22]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[23]  J. McKean,et al.  Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry , 2004 .

[24]  Berthold K. P. Horn,et al.  Hill shading and the reflectance map , 1981, Proceedings of the IEEE.

[25]  Jochen Aberle,et al.  Measurement and analysis of alluvial bed roughness / Mesure et analyse de la rugosité de lit d'alluvion , 2004 .

[26]  L. Allan James,et al.  Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA , 2007 .

[27]  D. Montgomery,et al.  Source areas, drainage density, and channel initiation , 1989 .

[28]  Efi Foufoula-Georgiou,et al.  Channel network extraction from high resolution topography using wavelets , 2007 .

[29]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[30]  P. Tarolli,et al.  The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology , 2008 .

[31]  K. C. Slatton,et al.  Airborne Laser Swath Mapping: Achieving the resolution and accuracy required for geosurficial research , 2007 .

[32]  Peter Calow,et al.  The Rivers Handbook , 1993 .

[33]  S. Wechsler Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .

[34]  Andrew K. Skidmore,et al.  A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model , 1989, Int. J. Geogr. Inf. Sci..

[35]  K. L. Frankel,et al.  Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data , 2007 .

[36]  D. J. Chadwick,et al.  Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity , 2006 .

[37]  Jeroen M. Schoorl,et al.  Three-dimensional landscape process modelling : the effect of DEM resolution , 2000 .