Hyperchaotic states in the parameter-space

Abstract In this paper we propose a numerical method to characterize hyperchaotic points in the parameter-space of continuous-time dynamical systems. The method considers the second largest Lyapunov exponent value as a measure of hyperchaotic motion, to construct two-dimensional parameter-space color plots. Different levels of hyperchaos in these plots are represented by a continuously changing yellow–red scale. As an example, a particular system modeled by a set of four nonlinear autonomous first-order ordinary differential equations is considered. Practical applications of these plots include, by instance, walking in the parameter-space of hyperchaotic systems along desirable paths.

[1]  Paulo C. Rech,et al.  A Parameter-Space of a Chua System with a Smooth Nonlinearity , 2009, Int. J. Bifurc. Chaos.

[2]  J. Gallas,et al.  Accumulation horizons and period adding in optically injected semiconductor lasers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Marco Monti,et al.  Characterization of the Rössler System in Parameter Space , 2007, Int. J. Bifurc. Chaos.

[4]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[5]  A. Tamasevicius,et al.  Hyperchaos in coupled Colpitts oscillators , 2003 .

[6]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[7]  Congxu Zhu Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers , 2010, Appl. Math. Comput..

[8]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[9]  Qingguo Li,et al.  Chaos synchronization of a new hyperchaotic system , 2010, Appl. Math. Comput..

[10]  Congxu Zhu,et al.  Feedback control methods for stabilizing unstable equilibrium points in a new chaotic system , 2009 .

[11]  Ma Xi-Kui,et al.  Study of hyperchaotic behavior in quantum cellular neural networks , 2003 .

[12]  Paulo C. Rech,et al.  DYNAMICS OF A PARTICULAR LORENZ TYPE SYSTEM , 2010 .

[13]  Congxu Zhu,et al.  Feedback control strategies for the Liu chaotic system , 2008 .

[14]  Shen Ke,et al.  Controlling hyperchaos in erbium-doped fibre laser , 2003 .

[15]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[16]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[17]  Gaogao Dong,et al.  A new hyperchaotic system and its synchronization , 2010, Appl. Math. Comput..

[18]  Paulo C. Rech,et al.  Regular and Chaotic Dynamics of the Lorenz-Stenflo System , 2010, Int. J. Bifurc. Chaos.

[19]  Toshimichi Saito,et al.  A simple hyperchaos generator based on impulsive switching , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Yi Li,et al.  Adaptive control and synchronization of a novel hyperchaotic system with uncertain parameters , 2008, Appl. Math. Comput..

[21]  Lin Wang,et al.  3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system , 2009 .

[22]  Zhenya Yan,et al.  Controlling hyperchaos in the new hyperchaotic Chen system , 2005, Appl. Math. Comput..

[23]  O. Rössler An equation for hyperchaos , 1979 .

[24]  沈柯,et al.  Controlling hyperchaos in erbium-doped fibre laser , 2005 .

[25]  Wuyin Jin,et al.  Synchronization transition in degenerate optical parametric oscillators induced by nonlinear coupling , 2010, Appl. Math. Comput..

[26]  Laurent Larger,et al.  Optical communication with synchronized hyperchaos generated electrooptically , 2002 .

[27]  Congxu Zhu,et al.  Control and synchronize a novel hyperchaotic system , 2010, Appl. Math. Comput..

[28]  Paulo C. Rech,et al.  Some two-dimensional parameter spaces of a Chua system with cubic nonlinearity. , 2010, Chaos.

[29]  Congxu Zhu,et al.  Adaptive synchronization of two novel different hyperchaotic systems with partly uncertain parameters , 2009, Appl. Math. Comput..

[30]  Xiao-Song Yang,et al.  Hyperchaos from two coupled Wien-bridge oscillators , 2008, Int. J. Circuit Theory Appl..

[31]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .