Numerical algorithms for the time-space tempered fractional Fokker-Planck equation

This paper aims to provide the high order numerical schemes for the time-space tempered fractional Fokker-Planck equation in a finite domain. The high order difference operators, called the tempered and weighted and shifted Lubich difference operators, are used to approximate the time tempered fractional derivative. The spatial operators are discretized by the central difference methods. We apply the central difference methods to the spatial operators and obtain that the numerical schemes are convergent with orders O(τq+h2)$O(\tau^{q} + h^{2})$ (q=1,2,3,4,5$q = 1,2,3,4,5$). The stability and convergence of the first order numerical scheme are rigorously analyzed. And the effectiveness of the presented schemes is testified with several numerical experiments. Additionally, some physical properties of this diffusion system are simulated.

[1]  A. Hanyga,et al.  Wave propagation in media with singular memory , 2001 .

[2]  D. Baleanu,et al.  Riesz Riemann-Liouville difference on discrete domains. , 2016, Chaos.

[3]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[4]  Minghua Chen,et al.  Numerical Algorithms for the Forward and Backward Fractional Feynman–Kac Equations , 2014, J. Sci. Comput..

[5]  W. Deng,et al.  Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations , 2015, 1501.00376.

[6]  The finite element method for the generalized space fractional Fokker-Planck equation , 2010, Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications.

[7]  Fawang Liu,et al.  Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation , 2009 .

[8]  Fawang Liu,et al.  Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation , 2011, Numerical Algorithms.

[9]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[10]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[11]  Can Li On the stability of exact ABCs for the reaction-subdiffusion equation on unbounded domain , 2015, 1510.08761.

[12]  Limei Yan Numerical Solutions of Fractional Fokker-Planck Equations Using Iterative Laplace Transform Method , 2013 .

[13]  Zhibo Wang,et al.  A high order compact finite difference scheme for time fractional Fokker-Planck equations , 2015, Appl. Math. Lett..

[14]  Weihua Deng,et al.  Finite difference/predictor-corrector approximations for the space and time fractional Fokker-Planck equation , 2012, Appl. Math. Lett..

[15]  Can Li,et al.  A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative , 2011, 1109.2345.

[16]  M. Meerschaert,et al.  Tempered fractional Brownian motion , 2013 .

[17]  Weihua Deng,et al.  High order schemes for the tempered fractional diffusion equations , 2016, Adv. Comput. Math..

[18]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and their Applications (III) , 2016 .

[19]  A. Saravanan,et al.  An efficient computational technique for solving the Fokker–Planck equation with space and time fractional derivatives , 2016 .

[20]  Yu-xin Zhang [3, 3] Padé approximation method for solving space fractional Fokker-Planck equations , 2014, Appl. Math. Lett..

[21]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..

[22]  Dumitru Baleanu,et al.  A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations , 2015 .

[23]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[24]  ON THE NUMERICAL SOLUTION OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[25]  Marcin Magdziarz,et al.  Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Hari M. Srivastava,et al.  Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets , 2015 .

[27]  Weihua Deng,et al.  A New Family of Difference Schemes for Space Fractional Advection Diffusion Equation , 2013, 1310.7671.

[28]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[29]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[30]  Can Li,et al.  Efficient numerical schemes for fractional water wave models , 2016, Comput. Math. Appl..

[31]  Yongji Yu,et al.  Study on force distribution of the tempered glass based on laser interference technology , 2015 .

[32]  FRACTIONAL FOKKER – PLANCK EQUATION WITH SPACE DEPENDENT DRIFT AND DIFFUSION : THE CASE OF TEMPERED α-STABLE WAITING-TIMES ∗ , 2013 .

[33]  Minghua Chen,et al.  Fourth Order Accurate Scheme for the Space Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[34]  D. del-Castillo-Negrete,et al.  Levy ratchets in the spatially tempered fractional Fokker-Planck equation , 2010, 1009.2083.

[35]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[36]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[37]  Ali Naji Shaker Numerical methods for fractional differential equations , 2017 .

[38]  William McLean,et al.  Numerical Solution of the Time-Fractional Fokker-Planck Equation with General Forcing , 2015, SIAM J. Numer. Anal..

[39]  Weihua Deng,et al.  Discretized fractional substantial calculus , 2013, 1310.3086.

[40]  Á. Cartea,et al.  Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[42]  Reinhold Schneider,et al.  Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations , 2015 .

[43]  I. Podlubny Fractional differential equations , 1998 .

[44]  Wei Li,et al.  Second-order explicit difference schemes for the space fractional advection diffusion equation , 2015, Appl. Math. Comput..

[45]  Weihua Deng,et al.  Fourth Order Difference Approximations for Space Riemann-Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators , 2014 .

[46]  Weihua Deng,et al.  Numerical analysis and physical simulations for the time fractional radial diffusion equation , 2011, Comput. Math. Appl..

[47]  Fawang Liu,et al.  Numerical methods of fractional partial differential equations and applications , 2015 .

[48]  D. Baleanu,et al.  Lattice fractional diffusion equation in terms of a Riesz–Caputo difference , 2015 .

[49]  Rosenau Tempered diffusion: A transport process with propagating fronts and inertial delay. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[50]  Dumitru Baleanu,et al.  On solutions of fractional Riccati differential equations , 2017, Advances in Difference Equations.

[51]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[52]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[53]  S. Wearne,et al.  Anomalous subdiffusion with multispecies linear reaction dynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  S L Wearne,et al.  Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .

[56]  Feng Chen A New Framework of GPU-Accelerated Spectral Solvers: Collocation and Glerkin Methods for Systems of Coupled Elliptic Equations , 2015, J. Sci. Comput..

[57]  Diego del-Castillo-Negrete,et al.  Transport in the spatially tempered, fractional Fokker–Planck equation , 2012 .

[58]  W. Deng,et al.  Well-posedness and numerical algorithm for the tempered fractional differential equations , 2019, Discrete & Continuous Dynamical Systems - B.

[59]  Dumitru Baleanu,et al.  A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative , 2017 .