Modified Shallow Water Equations for significantly varying seabeds

In the present study, we propose a modified version of the Nonlinear Shallow Water Equations (Saint-Venant or NSWE) for irrotational surface waves in the case when the bottom undergoes some significant variations in space and time. The model is derived from a variational principle by choosing an appropriate shallow water ansatz and imposing some constraints. Our derivation procedure does not explicitly involve any small parameter and is straightforward. The novel system is a non-dispersive non-hydrostatic extension of the classical Saint-Venant equations. A key feature of the new model is that, like the classical NSWE, it is hyperbolic and thus similar numerical methods can be used. We also propose a finite volume discretisation of the obtained hyperbolic system. Several test-cases are presented to highlight the added value of the new model. Some implications to tsunami wave modelling are also discussed.

[1]  Bram van Leer,et al.  Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes , 2003 .

[2]  Denys Dutykh,et al.  Dissipative Boussinesq equations , 2007 .

[3]  R. Dressler,et al.  NEW NONLINEAR SHALLOW-FLOW EQUATIONS WITH CURVATURE , 1978 .

[4]  D. Dutykh Mathematical modelling of tsunami waves , 2007 .

[5]  T. Katsaounis,et al.  Dispersive wave runup on non-uniform shores , 2011, 1101.1729.

[6]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[7]  Denys Dutykh,et al.  The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation , 2010, 1002.4553.

[8]  Chen Ji,et al.  Rupture Process of the 2004 Sumatra-Andaman Earthquake , 2005, Science.

[9]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[10]  P. Milewski,et al.  Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations , 2011, European Journal of Applied Mathematics.

[11]  M. Antuono,et al.  Dispersive Nonlinear Shallow‐Water Equations , 2009 .

[12]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[13]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Joseph B. Keller Shallow-water theory for arbitrary slopes of the bottom , 2003, Journal of Fluid Mechanics.

[15]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[16]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[17]  D. Lannes,et al.  Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model , 2010, J. Sci. Comput..

[18]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[19]  Stephan T. Grilli,et al.  On the Development and Application of Hybrid Numerical Models in Nonlinear Free Surface Hydrodynamics , 2008 .

[20]  Jean-Michel Ghidaglia,et al.  Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation , 1996 .

[21]  Frédéric Dias,et al.  On the fully-nonlinear shallow-water generalized Serre equations , 2010 .

[22]  Gustaf Söderlind,et al.  Digital filters in adaptive time-stepping , 2003, TOMS.

[23]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[24]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[25]  Jean-Michel Ghidaglia,et al.  On the numerical solution to two fluid models via a cell centered finite volume method , 2001 .

[26]  Stephen C. Medeiros,et al.  Review of wetting and drying algorithms for numerical tidal flow models , 2013 .

[27]  J. C. Luke A variational principle for a fluid with a free surface , 1967, Journal of Fluid Mechanics.

[28]  James T. Kirby,et al.  Wave evolution over submerged sills: tests of a high-order Boussinesq model , 1999 .

[29]  Roger Grimshaw,et al.  Water Waves , 2021, Mathematics of Wave Propagation.

[30]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[31]  A. Harten ENO schemes with subcell resolution , 1989 .

[32]  Hermann M. Fritz,et al.  Extreme runup from the 17 July 2006 Java tsunami , 2007 .

[33]  Christophe Ancey,et al.  Dynamique des avalanches , 2006 .

[34]  William Artiles,et al.  Nonlinear evolution of surface gravity waves over highly variable depth. , 2004, Physical review letters.

[35]  Denys Dutykh,et al.  Finite volume schemes for dispersive wave propagation and runup , 2010, J. Comput. Phys..

[36]  Gustaf Söderlind,et al.  Adaptive Time-Stepping and Computational Stability , 2006 .

[37]  A. I. Delis,et al.  Relaxation schemes for the shallow water equations , 2003 .

[38]  Shallow water equations for large bathymetry variations , 2011, 1103.5292.

[39]  Kolumban Hutter,et al.  The Savage–Hutter avalanche model: how far can it be pushed? , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[41]  F. Chazel Influence of bottom topography on long water waves , 2007, math/0701227.

[42]  T. Katsaounis,et al.  Finite volume methods for unidirectional dispersive wave models , 2010, 1011.4589.

[43]  Denys Dutykh,et al.  Long wave run-up on random beaches. , 2011, Physical review letters.

[44]  G. Carey,et al.  Free-surface flow over curved surfaces: Part I: Perturbation analysis , 1998 .

[45]  D. Lannes,et al.  A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model , 2010, J. Comput. Phys..

[46]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[47]  V. T. Chow Open-channel hydraulics , 1959 .

[48]  Denys Dutykh,et al.  Comparison between three-dimensional linear and nonlinear tsunami generation models , 2007 .

[49]  André Nachbin,et al.  A Terrain-Following Boussinesq System , 2003, SIAM J. Appl. Math..

[50]  S. Shenoi,et al.  Comment on "The Great Sumatra-Andaman Earthquake of 26 December 2004" , 2005, Science.

[51]  J. Hammack,et al.  Tsunamis - a model of their generation and propagation , 1972 .

[52]  Per A. Madsen,et al.  A REVIEW OF BOUSSINESQ-TYPE EQUATIONS FOR SURFACE GRAVITY WAVES , 1999 .

[53]  E. Pelinovsky,et al.  Savage‐Hutter model for avalanche dynamics in inclined channels: Analytical solutions , 2010 .

[54]  Denys Dutykh,et al.  Linear theory of wave generation by a moving bottom , 2006 .

[55]  Per A. Madsen,et al.  Tsunami generation, propagation, and run-up with a high-order Boussinesq model , 2009 .

[56]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[57]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[58]  J. Basdevant,et al.  Variational Principles in Physics , 2006 .

[59]  T. Y. Wu,et al.  A unified theory for modeling water waves , 2001 .

[60]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[61]  Maurizio Brocchini,et al.  On using Boussinesq-type equations near the shoreline: a note of caution , 2002 .

[62]  Ljf Lambert Broer On the hamiltonian theory of surface waves , 1974 .

[63]  Kazuo Nadaoka,et al.  A fully dispersive weakly nonlinear model for water waves , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  Pilar García-Navarro,et al.  A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS , 1993 .

[65]  D. Dutykh,et al.  PRACTICAL USE OF VARIATIONAL PRINCIPLES FOR MODELING WATER WAVES , 2010, 1002.3019.

[66]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[67]  M A U R ´ I C I,et al.  A Fully Nonlinear Boussinesq Model for Surface Waves. Part 2. Extension to O(kh) 4 , 2000 .

[68]  John W. Miles,et al.  Weakly dispersive nonlinear gravity waves , 1985, Journal of Fluid Mechanics.

[69]  Xin-She Yang,et al.  Mathematical modeling in the environment , 2001 .

[70]  G. A general approach to linear and non-linear dispersive waves using a Lagrangian By , 2005 .

[71]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[72]  K. Nadaoka,et al.  A time–dependent nonlinear mild slope equation for water waves , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  Yulong Xing,et al.  High order finite difference WENO schemes with the exact conservation property for the shallow water equations , 2005 .

[74]  P. Wessel Analysis of Observed and Predicted Tsunami Travel Times for the Pacific and Indian Oceans , 2009 .

[75]  Denys Dutykh,et al.  Energy of tsunami waves generated by bottom motion , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[77]  Denys Dutykh,et al.  Local run-up amplification by resonant wave interactions. , 2011, Physical review letters.

[78]  D. E. Mitsotakis,et al.  Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves , 2009, Math. Comput. Simul..

[79]  Efim Pelinovsky,et al.  Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles , 1992 .

[80]  C. Synolakis,et al.  The Runup of Long Waves , 1986 .

[81]  Costas E Synolakis,et al.  Tsunami science before and beyond Boxing Day 2004 , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[82]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[83]  Costas E. Synolakis,et al.  The runup of solitary waves , 1987, Journal of Fluid Mechanics.

[84]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[85]  Derek M. Causon,et al.  Numerical solutions of the shallow water equations with discontinuous bed topography , 2002 .

[86]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[87]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  Hu Hv Hu,et al.  On the Relevance of the Dam Break Problem in the Context of Nonlinear Shallow Water Equations , 2009 .

[89]  J. Hammack A note on tsunamis: their generation and propagation in an ocean of uniform depth , 1973, Journal of Fluid Mechanics.

[90]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[91]  B. Perthame,et al.  A new model of Saint Venant and Savage–Hutter type for gravity driven shallow water flows , 2003 .

[92]  Dimitrios Mitsotakis,et al.  Theory and Numerical Analysis of Boussinesq Systems: A Review , 2008 .

[93]  Patrick Bar-Avi,et al.  Water Waves: The Mathematical Theory with Application , 1995 .

[94]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[95]  C. Mei The applied dynamics of ocean surface waves , 1983 .

[96]  Mihailo D. Trifunac,et al.  Generation of tsunamis by a slowly spreading uplift of the sea floor , 2001 .

[97]  Vasily Titov,et al.  The Global Reach of the 26 December 2004 Sumatra Tsunami , 2005, Science.

[98]  David L. George,et al.  Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation , 2008, J. Comput. Phys..

[99]  R. S. Johnson A Modern Introduction to the Mathematical Theory of Water Waves: The equations for a viscous fluid , 1997 .

[100]  Denys Dutykh,et al.  Water waves generated by a moving bottom , 2007 .

[101]  P. Archambeau,et al.  Depth-integrated flow modelling taking into account bottom curvature , 2006 .