Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

[1]  Robert Pincus,et al.  The Representation of Tropospheric Water Vapor Over Low-Latitude Oceans in (Re-)analysis: Errors, Impacts, and the Ability to Exploit Current and Prospective Observations , 2017, Surveys in Geophysics.

[2]  K. Emanuel,et al.  EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation , 2017, Surveys in Geophysics.

[3]  S. Bony,et al.  Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review , 2017, Surveys in Geophysics.

[4]  R. Wood,et al.  The Change in Low Cloud Cover in a Warmed Climate Inferred from AIRS, MODIS, and ERA-Interim , 2017 .

[5]  S. Klein,et al.  Impact of decadal cloud variations on the Earth/'s energy budget , 2016 .

[6]  B. Medeiros,et al.  Understanding the Varied Influence of Midlatitude Jet Position on Clouds and Cloud Radiative Effects in Observations and Global Climate Models , 2016 .

[7]  S. Klein,et al.  Insights from a refined decomposition of cloud feedbacks , 2016 .

[8]  S. Klein,et al.  Constraining the low‐cloud optical depth feedback at middle and high latitudes using satellite observations , 2016 .

[9]  David B. Mechem,et al.  The Time Scales of Variability of Marine Low Clouds , 2016 .

[10]  T. Schneider,et al.  Constraints on Climate Sensitivity from Space-Based Measurements of Low-Cloud Reflection , 2016 .

[11]  J. Gregory,et al.  Multiannual Ocean–Atmosphere Adjustments to Radiative Forcing , 2016 .

[12]  S. Bony,et al.  Shallowness of tropical low clouds as a predictor of climate models’ response to warming , 2016, Climate Dynamics.

[13]  B. Stevens,et al.  The role of precipitation and spatial organization in the response of trade‐wind clouds to warming , 2016 .

[14]  T. Andrews,et al.  Variation in climate sensitivity and feedback parameters during the historical period , 2016 .

[15]  M. Wild,et al.  On the Zonal Near-Constancy of Fractional Solar Absorption in the Atmosphere , 2016 .

[16]  D. Hartmann,et al.  Observational evidence for a negative shortwave cloud feedback in middle to high latitudes , 2016 .

[17]  K. Taylor,et al.  Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity , 2016 .

[18]  J. Norris,et al.  Reducing the uncertainty in subtropical cloud feedback , 2015 .

[19]  I. Sandu,et al.  Observed and modeled patterns of covariability between low‐level cloudiness and the structure of the trade‐wind layer , 2015 .

[20]  C. Bretherton Insights into low-latitude cloud feedbacks from high-resolution models , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  J. Norris,et al.  How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s , 2015 .

[22]  C. Zhai,et al.  Long‐term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity , 2015 .

[23]  S. Klein,et al.  Emergent Constraints for Cloud Feedbacks , 2015, Current Climate Change Reports.

[24]  S. Klein,et al.  Positive tropical marine low‐cloud cover feedback inferred from cloud‐controlling factors , 2015 .

[25]  S. Klein,et al.  The strength of the tropical inversion and its response to climate change in 18 CMIP5 models , 2015, Climate Dynamics.

[26]  A. P. Siebesma,et al.  An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation , 2015 .

[27]  A. Evan,et al.  Empirical Removal of Artifacts from the ISCCP and PATMOS-x Satellite Cloud Records , 2015 .

[28]  B. Stevens,et al.  On the seasonal and synoptic time scale variability of the North Atlantic trades and its low-level clouds , 2015 .

[29]  B. Stevens,et al.  The influence of cloud feedbacks on equatorial Atlantic variability , 2015 .

[30]  M. Webb,et al.  The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models , 2015 .

[31]  B. Stevens,et al.  Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability , 2014 .

[32]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[33]  S. Klein,et al.  On the spread of changes in marine low cloud cover in climate model simulations of the 21st century , 2014, Climate Dynamics.

[34]  C. Bretherton,et al.  Low cloud reduction in a greenhouse‐warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition , 2014 .

[35]  A. P. Siebesma,et al.  CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models , 2013 .

[36]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[37]  S. Klein,et al.  Low‐cloud optical depth feedback in climate models , 2013 .

[38]  J. Norris,et al.  Observational Evidence That Enhanced Subsidence Reduces Subtropical Marine Boundary Layer Cloudiness , 2013 .

[39]  C. Bretherton,et al.  Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single‐LES exploration extending the CGILS cases , 2013 .

[40]  C. Bretherton,et al.  Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison , 2013 .

[41]  M. Webb,et al.  Origins of differences in climate sensitivity, forcing and feedback in climate models , 2013, Climate Dynamics.

[42]  Andrew K. Heidinger,et al.  PATMOS-x: Results from a Diurnally Corrected 30-yr Satellite Cloud Climatology , 2013 .

[43]  M. Christensen,et al.  Radiative Impacts of Free-Tropospheric Clouds on the Properties of Marine Stratocumulus , 2012 .

[44]  B. Stevens,et al.  Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity Atmosphere , 2012 .

[45]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[46]  S. Bony,et al.  The CGILS experimental design to investigate low cloud feedbacks in general circulation models by using single‐column and large‐eddy simulation models , 2012 .

[47]  Robert Pincus,et al.  Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models , 2011 .

[48]  S. Klein,et al.  Computing and Partitioning Cloud Feedbacks using Cloud Property Histograms. Part II: Attribution to the Nature of Cloud Changes , 2011 .

[49]  Steven Platnick,et al.  Viewing Geometry Dependencies in MODIS Cloud Products , 2010 .

[50]  R. Marchand,et al.  An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids , 2010 .

[51]  J. Norris,et al.  Assessing the Impact of Meteorological History on Subtropical Cloud Fraction , 2010 .

[52]  S. Bony,et al.  The GCM‐Oriented CALIPSO Cloud Product (CALIPSO‐GOCCP) , 2010 .

[53]  R. Wood,et al.  Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean , 2009 .

[54]  R. Marchand,et al.  A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data , 2009 .

[55]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[56]  Sandrine Bony,et al.  An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models , 2008 .

[57]  C. Bretherton,et al.  On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability , 2006 .

[58]  J. Norris,et al.  North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships , 2005 .

[59]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[60]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[61]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[62]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[63]  S. Klein,et al.  Synoptic Variability of Low-Cloud Properties and Meteorological Parameters in the Subtropical Trade Wind Boundary Layer , 1997 .

[64]  S. Klein,et al.  On the Relationships among Low-Cloud Structure, Sea Surface Temperature, and Atmospheric Circulation in the Summertime Northeast Pacific , 1995 .

[65]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[66]  C. Bretherton Understanding Albrecht's Model of Trade Cumulus Cloud Fields , 1993 .

[67]  Kevin E. Trenberth,et al.  A global monthly sea surface temperature climatology , 1992 .

[68]  W. Schubert,et al.  Marine Stratocumulus Convection. part II: Horizontally Inhomogeneous Solutions , 1979 .

[69]  Clara Deser,et al.  Sea surface temperature variability: patterns and mechanisms. , 2010, Annual review of marine science.

[70]  C. Bretherton,et al.  Response of a Subtropical Stratocumulus-Capped Mixed Layer to Climate and Aerosol Changes , 2009 .

[71]  B. Stevens,et al.  Cloud-controlling factors: low clouds , 2009 .

[72]  R. Charlson,et al.  Cloud-controlling Factors: Low Clouds , 2009 .

[73]  M. Webb,et al.  Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing , 2008 .

[74]  S. Bony,et al.  PCIC SCIENCE BRIEF : SPREAD IN MODEL CLIMATE SENSITIVITY TRACED TO ATMOSPHERIC CONVECTIVE MIXING , 2022 .