Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme

[1]  Renato Spigler Applied and Industrial Mathematics , 1899 .

[2]  N. Slater Classical Motion under a Morse Potential , 1957, Nature.

[3]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[4]  J. Mccammon,et al.  Dynamics of Proteins and Nucleic Acids , 2018 .

[5]  Tamar Schlick,et al.  Can classical equations simulate quantum‐mechanical behavior? a molecular dynamics investigation of a diatomic molecule with a morse potential , 1989 .

[6]  T. Schlick,et al.  Molecular dynamics by the backward-Euler method , 1989 .

[7]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[8]  T. Schlick,et al.  Increasing the time step in molecular dynamics , 1992 .

[9]  T Schlick,et al.  Supercoiled DNA energetics and dynamics by computer simulation. , 1992, Journal of molecular biology.

[10]  Tamar Schlick,et al.  TNPACK—a truncated Newton minimization package for large-scale problems: II. Implementation examples , 1992, TOMS.

[11]  Tamar Schlick,et al.  TNPACK—A truncated Newton minimization package for large-scale problems: I. Algorithm and usage , 1992, TOMS.

[12]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[13]  Robert D. Skeel Variable step size destabilizes the Störmer/leapfrog/verlet method , 1993 .

[14]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[15]  DANIEL I. OKUNBOR,et al.  Canonical numerical methods for molecular dynamics simulations , 1994, J. Comput. Chem..

[16]  Stephen K. Gray,et al.  Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods , 1994 .

[17]  Some aspects of Hamiltonian systems and symplectic algorithms , 1994 .

[18]  T. Schlick,et al.  The Langevin/implicit‐Euler/normal‐mode scheme for molecular dynamics at large time steps , 1994 .