The boundedness-by-entropy principle for cross-diffusion systems

A novel principle is presented which allows for the proof of bounded weak solutions to a class of physically relevant, strongly coupled parabolic systems exhibiting a formal gradient-flow structure. The main feature of these systems is that the diffusion matrix may be generally neither symmetric nor positive semi-definite. The key idea of the principle is to employ a transformation of variables, determined by the entropy density, which is defined by the gradient-flow formulation. The transformation yields at the same time a positive semidefinite diffusion matrix, suitable gradient estimates as well as lower and/or upper bounds of the solutions. These bounds are a consequence of the transformation of variables and are obtained without the use of a maximum principle. Several classes of cross-diffusion systems are identified which can be solved by this technique. The systems are formally derived from continuous-time random walks on a lattice modeling, for instance, the motion of ions, cells, or fluid particles.

[1]  Roger Temam,et al.  Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows , 2013 .

[2]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[3]  Gonzalo Galiano,et al.  Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model , 2003, Numerische Mathematik.

[4]  Claire Chainais-Hillairet,et al.  ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.

[5]  Maximal Lp-RegularityLet,et al.  Maximal Regularity for Evolution Equations in L P -spaces , 2002 .

[6]  D. Bothe,et al.  Global Existence for a Class of Reaction-Diffusion Systems with Mass Action Kinetics and Concentration-Dependent Diffusivities , 2014, 1402.4846.

[7]  Ansgar Jüngel,et al.  Compact families of piecewise constant functions in Lp(0,T;B) , 2012 .

[8]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[9]  Ansgar Jüngel,et al.  Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..

[10]  Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model , 1996 .

[11]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[14]  Everywhere Regularity of Solutions to a Class of Strongly Coupled Degenerate Parabolic Systems , 2006 .

[15]  Laurent Desvillettes,et al.  Improved Duality Estimates and Applications to Reaction-Diffusion Equations , 2013, 1304.4040.

[16]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[17]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[18]  Ansgar Jüngel,et al.  A Note on Aubin-Lions-Dubinskiĭ Lemmas , 2013, 1305.6235.

[19]  G. Mingione,et al.  Parabolic systems with polynomial growth and regularity , 2011 .

[20]  Matthias Liero,et al.  Gradient structures and geodesic convexity for reaction–diffusion systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Helen M Byrne,et al.  A mechanical model of tumor encapsulation and transcapsular spread. , 2002, Mathematical biosciences.

[22]  Ansgar Jüngel,et al.  Analysis of an Incompressible Navier–Stokes–Maxwell–Stefan System , 2013, 1310.3376.

[23]  J. U. Kim,et al.  Smooth solutions to a quasi-linear system of diffusion equations for a certain population model☆ , 1984 .

[24]  Chunli Cui,et al.  A density-dependent chemotaxis–haptotaxis system modeling cancer invasion☆ , 2010 .

[25]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[26]  Dung Le,et al.  Global existence for a class of strongly coupled parabolic systems , 2006, 2105.08615.

[27]  Dieter Bothe,et al.  Continuum thermodynamics of chemically reacting fluid mixtures , 2013, 1401.5991.

[28]  H. Amann Dynamic theory of quasilinear parabolic systems. III. Global existence (Erratum). , 1990 .

[29]  Dung Le,et al.  Cross diffusion systems on n spatial dimensional domains , 2002 .

[30]  Dieter Bothe,et al.  On the Maxwell-Stefan Approach to Multicomponent Diffusion , 2010, 1007.1775.

[31]  Dariusz Wrzosek,et al.  Volume Filling Effect in Modelling Chemotaxis , 2010 .

[32]  Reinhard Redlinger Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions , 1989 .

[33]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[34]  Ansgar Jüngel,et al.  Existence Analysis of Maxwell-Stefan Systems for Multicomponent Mixtures , 2012, SIAM J. Math. Anal..

[35]  M. Wolfram,et al.  Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries , 2012 .

[36]  Guillaume Rolland,et al.  Global Well-Posedness of a Conservative Relaxed Cross Diffusion System , 2012, SIAM J. Math. Anal..

[37]  Ansgar Jüngel,et al.  ENTROPY STRUCTURE OF A CROSS-DIFFUSION TUMOR-GROWTH MODEL , 2012 .

[38]  Ayman Moussa,et al.  Entropy, Duality, and Cross Diffusion , 2013, SIAM J. Math. Anal..

[39]  Ansgar Jüngel,et al.  Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .

[40]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[41]  Ansgar Jüngel,et al.  Symmetrization and entropy inequality for general diffusion equations , 1997 .

[42]  Martin Burger,et al.  Nonlinear Cross-Diffusion with Size Exclusion , 2010, SIAM J. Math. Anal..

[43]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[44]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[45]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[46]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[47]  S. Ostrander Macroscopic Cross-Diffusion Models Derived from Spatially Discrete Continuous Time Microscopic Models , 2011 .

[48]  Laurent Desvillettes,et al.  Global Existence for Quadratic Systems of Reaction-Diffusion , 2007 .

[49]  Ansgar Jüngel,et al.  Analysis of a Parabolic Cross-Diffusion Semiconductor Model with Electron-Hole Scattering , 2007 .

[50]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[51]  W. Gerlach,et al.  Generalised drift-diffusion model of bipolar transport in semiconductors , 1996 .

[52]  L. Desvillettes,et al.  New results for triangular reaction cross diffusion system , 2014, 1408.5814.

[53]  Shuichi Kawashima,et al.  On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws , 1988 .

[54]  Atsushi Yagi Global solution to some quasilinear parabolic system in population dynamics , 1993 .

[55]  Didier Schmitt,et al.  Blowup in Reaction-Diffusion Systems with Dissipation of Mass , 1997, SIAM Rev..

[56]  Seong-A Shim Uniform Boundedness and Convergence of Solutions to Cross-Diffusion Systems , 2002 .

[57]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .