Structural Reliability Methods Applied to Power Switch Devices: Example of an Aeronautical IGBT Module

In this paper, an Insulated Gate Bipolar Transistor (IGBT) module designed for aeronautic applications is investigated using structural reliability methods coupled with Finite Elements (FE) modeling. The lifetime of the module with respect to its solder joints failure, is evaluated using its thermomechanical response, in association with a low cycle fatigue model. The simulation of an aeronautic typical Accelerated Thermal Cycling (ATC) test configuration allows checking in a first step, the relevancy of the numerical procedure by assessing the experimental lifetime of the connections, and comparing them to experimental results. Then, the structural reliability of the module is evaluated over the target aircraft predicted useful lifetime, comparing the First Order Reliability Method (FORM) and Monte-Carlo Simulation (M-CS). The appropriate temperature mission profile and flight time are therefore considered with their scatters, in addition to those of the parameters of the fatigue model. Regarding these latter parameters, a simulation based approach is proposed and applied for the determination of their probability density function (pdf). For reasonable reliability analysis time, the thermomechanical response of the module was surrogated using Kriging metamodels. The paper ends with the exploitation of the reliability importance factors for identifying and proposing improvements, with the demonstration of considerable reliability increase.

[1]  Fred L. Drake,et al.  The Python Language Reference Manual , 1999 .

[2]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[3]  R.E.J. Quigley More Electric Aircraft , 1993, Proceedings Eighth Annual Applied Power Electronics Conference and Exposition,.

[4]  C. A. Clarotti,et al.  Fiabilité des équipements et théorie de la décision statistique fréquentielle et bayésienne , 1992 .

[5]  Jorge E. Hurtado,et al.  Neural-network-based reliability analysis: a comparative study , 2001 .

[6]  Ganesh Subbarayan,et al.  Predictive reliability models through validated correlation between power cycling and thermal cycling accelerated life tests , 2002 .

[7]  J. Wilde,et al.  Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys , 2001 .

[8]  Joseph H. Saleh,et al.  Highlights from the early (and pre-) history of reliability engineering , 2006, Reliab. Eng. Syst. Saf..

[9]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[10]  Wen-Fang Wu,et al.  Quantitative reliability analysis of electronic packages in consideration of variability of model parameters , 2005, 2005 7th Electronic Packaging Technology Conference.

[11]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[12]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .

[13]  de Maurice Lemaire Fiabilité des structures , 2006 .

[14]  A. Dasgupta,et al.  Isothermal Mechanical Durability of Three Selected PB-Free Solders: Sn3.9Ag0.6Cu, Sn3.5Ag, and Sn0.7Cu , 2005 .

[15]  Kyung K. Choi,et al.  Hybrid Analysis Method for Reliability-Based Design Optimization , 2003 .

[16]  Mauro Ciappa,et al.  Selected failure mechanisms of modern power modules , 2002, Microelectron. Reliab..

[17]  S.F. Popelar A parametric study of flip chip reliability based on solder fatigue modelling , 1997, Twenty First IEEE/CPMT International Electronics Manufacturing Technology Symposium Proceedings 1997 IEMT Symposium.

[18]  Joseph R. Fragola,et al.  Reliability and risk analysis data base development: an historical perspective , 1996 .

[19]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[20]  Alexandrine Guédon-Gracia Contribution à la conception thermo-mécanique optimisée d'assemblages sans plomb , 2005 .

[21]  P. Vassiliou,et al.  Reliability importance of components in a complex system , 2004, Annual Symposium Reliability and Maintainability, 2004 - RAMS.

[22]  Enrico Zio,et al.  Reliability engineering: Old problems and new challenges , 2009, Reliab. Eng. Syst. Saf..

[23]  Zhi-Jie Pan,et al.  Variance importance of system components by Monte Carlo , 1988 .

[24]  M. White Microelectronics reliability : physics-of-failure based modeling and lifetime evaluation , 2008 .

[25]  Laurent Dupont Contribution à l'étude de la durée de vie des assemblages de puissance dans des environnements haute température et avec des cycles thermiques de grande amplitude , 2006 .

[26]  F. C. Meng Comparing the importance of system components by some structural characteristics , 1996, IEEE Trans. Reliab..

[27]  Lin Ma,et al.  An analytical model for interactive failures , 2006, Reliab. Eng. Syst. Saf..

[28]  M. Karama,et al.  Technological study of an IGBT module for an aeronautical application in zone engine , 2005, 2005 European Conference on Power Electronics and Applications.

[29]  Yan-Gang Zhao,et al.  System Reliability Evaluation of Ductile Frame Structures , 1998 .

[30]  M. G. Bevan,et al.  Complex fatigue of soldered joints-comparison of fatigue models , 1997, 1997 Proceedings 47th Electronic Components and Technology Conference.

[31]  Stephane Azzopardi,et al.  Reliability of the connections used in IGBT modules, in aeronautical environment , 2007 .

[32]  J. A. Weimer The role of electric machines and drives in the more electric aircraft , 2003, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03..

[33]  Jun Tang Mechanical system reliability analysis using a combination of graph theory and Boolean function , 2001, Reliab. Eng. Syst. Saf..

[34]  Robert Darveaux,et al.  Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction , 2002 .

[35]  D. Frear The Mechanics of Solder Alloy Interconnects , 1993 .

[36]  Adrien Zéanh Contribution à l'amélioration de la fiabilité des modules IGBT utilisés en environnement aéronautique , 2009 .

[37]  Elmer E Lewis,et al.  Introduction To Reliability Engineering , 1987 .

[38]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[39]  Sophie Baillargeon,et al.  Le krigeage : revue de la théorie et application à l'interpolation spatiale de données de précipitations , 2005 .

[40]  Tim Bedford,et al.  Reliability databases in perspective , 2002, IEEE Trans. Reliab..

[41]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[42]  Michel Mermet-Guyennet New structure of power integrated module , 2006 .

[43]  Wilson Sergio Venturini,et al.  Component and system reliability analysis of nonlinear reinforced concrete grids with multiple failure modes , 2008 .

[44]  C. Bucher,et al.  A fast and efficient response surface approach for structural reliability problems , 1990 .

[45]  Bruce R. Ellingwood,et al.  A new look at the response surface approach for reliability analysis , 1993 .

[46]  Irfan Kaymaz,et al.  Application Of Kriging Method To Structural Reliability Problems , 2005 .

[47]  G. Kharmanda,et al.  Efficient reliability-based design optimization using a hybrid space with application to finite element analysis , 2002 .

[48]  P. L Hall,et al.  Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and Weibull analysis: a parametric study , 2003, Reliab. Eng. Syst. Saf..

[49]  M. Thoben,et al.  Rate dependent constitutive relations based on Anand model for 92.5Pb5Sn2.5Ag solder , 2000 .

[50]  Stephane Azzopardi,et al.  An investigation into the reliability of power modules considering baseplate solders thermal fatigue in aeronautical applications , 2009, Microelectron. Reliab..

[51]  Michael S. Eldred,et al.  Reliability-Based Design Optimization for Shape Design of Compliant Micro-Electro-Mechanical Systems. , 2006 .

[52]  Robert E. Melchers,et al.  Estimation of failure probabilities for intersections of non-linear limit states , 2001 .

[53]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[54]  Wolfgang Fichtner,et al.  A Novel Thermomechanics -Based Lifetime Prediction Model for Cycle Fatigue Failure Mechanisms in Power Semiconductors , 2002, Microelectron. Reliab..

[55]  R. Rackwitz Reliability analysis—a review and some perspectives , 2001 .

[56]  李洪双,et al.  SUPPORT VECTOR MACHINE FOR STRUCTURAL RELIABILITY ANALYSIS , 2006 .