Silicon-Integrated Hybrid-Cavity 850-nm VCSELs by Adhesive Bonding: Impact of Bonding Interface Thickness on Laser Performance

The impact of bonding interface thickness on the performance of 850-nm silicon-integrated hybrid-cavity vertical-cavity surface-emitting lasers (HC-VCSELs) is investigated. The HC-VCSEL is constructed by attaching a III–V “half-VCSEL” to a dielectric distributed Bragg reflector on a Si substrate using ultrathin divinylsiloxane-bis-benzocyclobutene (DVS-BCB) adhesive bonding. The thickness of the bonding interface, defined by the DVS-BCB layer together with a thin SiO2 layer on the “half-VCSEL,” can be used to tailor the performance, for e.g., maximum output power or modulation speed at a certain temperature, or temperature-stable performance. Here, we demonstrate an optical output power of 2.3 and 0.9 mW, a modulation bandwidth of 10.0 and 6.4 GHz, and error-free data transmission up to 25 and 10 Gb/s at an ambient temperature of 25 and 85 °C, respectively. The thermal impedance is found to be unaffected by the bonding interface thickness.

[1]  P. Westbergh,et al.  Advances in VCSELs for Communication and Sensing , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Kresten Yvind,et al.  Hybrid vertical‐cavity laser with lateral emission into a silicon waveguide , 2014, 1411.2483.

[3]  Nicolas A. F. Jaeger,et al.  Vertical-cavity surface-emitting laser flip-chip bonding to silicon photonics chip , 2015, 2015 IEEE Optical Interconnects Conference (OI).

[4]  Li Zhu,et al.  Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. , 2015, Optics express.

[5]  Wlodzimierz Nakwaski,et al.  Thermal aspects of efficient operation of vertical-cavity surface-emitting lasers , 1996 .

[6]  Hui Li,et al.  Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs , 2014, IEEE Journal of Quantum Electronics.

[7]  Johan S. Gustavsson,et al.  Impact of Damping on High-Speed Large Signal VCSEL Dynamics , 2015, Journal of Lightwave Technology.

[8]  H. Kawaguchi 1.55-μm VCSEL with polarization-independent high-index-contrast subwavelength grating mirror on SOI , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[9]  Benjamin Kögel,et al.  Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. , 2011, Optics express.

[10]  Brian Thibeault,et al.  Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers , 1993 .

[11]  Gunther Roelkens,et al.  Silicon-integrated short-wavelength hybrid-cavity VCSEL. , 2015, Optics express.

[12]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[13]  van Pj René Veldhoven,et al.  Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate , 2013 .

[14]  Gunther Roelkens,et al.  20-Gb/s Modulation of Silicon-Integrated Short-Wavelength Hybrid-Cavity VCSELs , 2016, IEEE Photonics Technology Letters.

[15]  H. Lin,et al.  VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings , 2004 .

[16]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[17]  Connie Chang-Hasnain,et al.  Nanolasers Grown on Silicon , 2011, 1101.3305.

[18]  R. Michalzik VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers , 2012 .

[19]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .