Analyzing Disturbed Diffusion on Networks

This work provides the first detailed investigation of the disturbed diffusion scheme FOS/C introduced in [17] as a type of diffusion distance measure within a graph partitioning framework related to Lloyd's k-means algorithm [14]. After outlining connections to distance measures proposed in machine learning, we show that FOS/C can be related to random walks despite its disturbance. Its convergence properties regarding load distribution and edge flow characterization are examined on two different graph classes, namely torus graphs and distance-transitive graphs (including hypercubes), representatives of which are frequently used as interconnection networks.

[1]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[2]  Francis C. M. Lau,et al.  Load balancing in parallel computers - theory and practice , 1996, The Kluwer international series in engineering and computer science.

[3]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[4]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[5]  Naftali Tishby,et al.  Data Clustering by Markovian Relaxation and the Information Bottleneck Method , 2000, NIPS.

[6]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[7]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[8]  Y. F. Hu,et al.  An improved diffusion algorithm for dynamic load balancing , 1999, Parallel Comput..

[9]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[10]  Robert B. Ellis Discrete Green's functions for products of regular graphs , 2003, math/0309080.

[11]  George Cybenko,et al.  Dynamic Load Balancing for Distributed Memory Multiprocessors , 1989, J. Parallel Distributed Comput..

[12]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[13]  Ralf Diekmann,et al.  Efficient schemes for nearest neighbor load balancing , 1999, Parallel Comput..

[14]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[15]  Stefan Schamberger,et al.  A Shape Optimizing Load Distribution Heuristic for Parallel Adaptive FEM Computations , 2005, PaCT.

[16]  G. Grimmett,et al.  Probability and random processes , 2002 .

[17]  David F. Heidel,et al.  An Overview of the BlueGene/L Supercomputer , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[18]  Henning Meyerhenke,et al.  Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[19]  Naftali Tishby,et al.  Document clustering using word clusters via the information bottleneck method , 2000, SIGIR '00.

[20]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[21]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[22]  S. vanDongen Graph Clustering by Flow Simulation , 2000 .

[23]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[24]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[25]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[27]  Jiří Adámek Foundations of coding , 1991 .

[28]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[29]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[30]  Norman Biggs Algebraic Graph Theory: Index , 1974 .