Snaking bifurcations of localized patterns on ring lattices

We study the structure of stationary patterns in bistable lattice dynamical systems posed on rings with a symmetric coupling structure in the regime of small coupling strength. We show that sparse coupling (for instance, nearest-neighbour or next-nearest-neighbour coupling) and all-to-all coupling lead to significantly different solution branches. In particular, sparse coupling leads to snaking branches with many saddle-node bifurcations, whilst all-to-all coupling leads to branches with six saddle nodes, regardless of the size of the number of nodes in the graph.

[1]  I. V. Barashenkov,et al.  Two-dimensional solitons on the surface of magnetic fluids. , 2005, Physical review letters.

[3]  Edgar Knobloch,et al.  Spatial Localization in Dissipative Systems , 2015 .

[4]  E. Meron From Patterns to Function in Living Systems: Dryland Ecosystems as a Case Study , 2018 .

[5]  Gregory Kozyreff,et al.  Exponential asymptotics of localised patterns and snaking bifurcation diagrams , 2009 .

[6]  Alan R. Champneys,et al.  Localized Hexagon Patterns of the Planar Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[7]  S. Chapman,et al.  Asymptotics of large bound states of localized structures. , 2006, Physical review letters.

[8]  Ian Stewart,et al.  Symmetry methods in mathematical biology , 2015 .

[9]  W. Firth,et al.  On homoclinic snaking in optical systems. , 2007, Chaos.

[10]  W. Firth,et al.  Bifurcation structure of dissipative solitons , 2007 .

[11]  Jason J. Bramburger,et al.  Localized patterns in planar bistable weakly coupled lattice systems , 2020, Nonlinearity.

[12]  C. Kuehn Multiple Time Scale Dynamics , 2015 .

[13]  J. Dawes,et al.  Snaking and isolas of localised states in bistable discrete lattices , 2009, 0910.0294.

[14]  P. Coullet,et al.  Stable static localized structures in one dimension , 2000, Physical review letters.

[15]  Edgar Knobloch,et al.  To Snake or Not to Snake in the Planar Swift-Hohenberg Equation , 2010, SIAM J. Appl. Dyn. Syst..

[16]  D Adzkiya,et al.  Snakes and ghosts in a parity-time-symmetric chain of dimers. , 2018, Physical review. E.

[17]  Sofia B. S. D. Castro,et al.  Symmetry-breaking as an origin of species , 2003 .

[18]  H. Susanto,et al.  Homoclinic snaking in the discrete Swift-Hohenberg equation. , 2017, Physical review. E.

[19]  E. Knobloch,et al.  Localized states in the generalized Swift-Hohenberg equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  J. H. P. Dawes,et al.  The emergence of a coherent structure for coherent structures: localized states in nonlinear systems , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Björn Sandstede,et al.  Snakes, Ladders, and Isolas of Localized Patterns , 2009, SIAM J. Math. Anal..

[22]  Michele Ciavarella,et al.  Snaking bifurcations in a self-excited oscillator chain with cyclic symmetry , 2017, Commun. Nonlinear Sci. Numer. Simul..

[23]  David J. B. Lloyd,et al.  Homoclinic snaking near the surface instability of a polarisable fluid , 2015, Journal of Fluid Mechanics.

[24]  Y. Pomeau Front motion, metastability and subcritical bifurcations in hydrodynamics , 1986 .

[25]  Secondary bifurcations in systems with all-to-all coupling. Part II. , 2006 .

[26]  M. Groves,et al.  Pattern formation on the free surface of a ferrofluid: spatial dynamics and homoclinic bifurcation , 2016, 1610.07760.

[27]  Alan R. Champneys,et al.  Discrete Snaking: Multiple Cavity Solitons in Saturable Media , 2010, SIAM J. Appl. Dyn. Syst..

[28]  Ian Stewart,et al.  Symmetry-Breaking as an Origin of Species , 2003 .

[29]  Edgar Knobloch,et al.  Snakes and ladders: Localized states in the Swift–Hohenberg equation , 2007 .

[30]  Ian Stewart,et al.  Secondary bifurcations in systems with all–to–all coupling , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Toby Elmhirst Sn-Equivariant Symmetry-Breaking bifurcations , 2004, Int. J. Bifurc. Chaos.

[32]  R. Carretero-González,et al.  Multistable Solitons in Higher-Dimensional Cubic-Quintic Nonlinear Schrödinger Lattices , 2008, 0804.0497.

[33]  P. D. Woods,et al.  Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopft bifurcation , 1999 .

[34]  Nick McCullen,et al.  Pattern Formation on Networks: from Localised Activity to Turing Patterns , 2016, Scientific Reports.

[35]  Jason J. Bramburger,et al.  Isolas of multi-pulse solutions to lattice dynamical systems , 2020, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  C. Chong,et al.  VARIATIONAL APPROXIMATIONS OF BIFURCATIONS OF ASYMMETRIC SOLITONS IN CUBIC-QUINTIC NONLINEAR , 2009, 0904.3387.

[37]  K. Berenhaut,et al.  Applied Mathematical Sciences , 2012 .

[38]  Björn Sandstede,et al.  Spatially Localized Structures in Lattice Dynamical Systems , 2019, Journal of nonlinear science.