A particle-particle hybrid method for kinetic and continuum equations

We present a coupling procedure for two different types of particle methods for the Boltzmann and the Navier-Stokes equations. A variant of the DSMC method is applied to simulate the Boltzmann equation, whereas a meshfree Lagrangian particle method, similar to the SPH method, is used for simulations of the Navier-Stokes equations. An automatic domain decomposition approach is used with the help of a continuum breakdown criterion. We apply adaptive spatial and time meshes. The classical Sod's 1D shock tube problem is solved for a large range of Knudsen numbers. Results from Boltzmann, Navier-Stokes and hybrid solvers are compared. The CPU time for the hybrid solver is 3-4 times faster than for the Boltzmann solver.

[1]  Reinhard Illner,et al.  A convergence proof for Nanbu's simulation method for the full Boltzmann equation , 1989 .

[2]  Daniel A. Erwin,et al.  Two-dimensional hybrid continuum/particle approach for rarefied flows , 1992 .

[3]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[4]  O. Aktas,et al.  A Combined Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters , 2002 .

[5]  E Weinan,et al.  A discontinuous Galerkin implementation of a domain decomposition method for kinetic-hydrodynamic coupling multiscale problems in gas dynamics and device simulations , 2007, J. Comput. Phys..

[6]  Moulay D. Tidriri,et al.  Coupling Boltzmann and Navier-Stokes Equations by Friction , 1996 .

[7]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[8]  V. V. Aristov,et al.  Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement , 2007, J. Comput. Phys..

[9]  Sudarshan Tiwari,et al.  A LSQ-SPH Approach for Solving Compressible Viscous Flows , 2001 .

[10]  Axel Klar,et al.  An adaptive domain decomposition procedure for Boltzmann and Euler equations , 1998 .

[11]  Graham V. Candler,et al.  Predicting failure of the continuum fluid equations in transitional hypersonic flows , 1994 .

[12]  Sudarshan Tiwari,et al.  Modeling of two-phase flows with surface tension by finite pointset method (FPM) , 2007 .

[13]  Yoshio Sone,et al.  Molecular gas dynamics , 2007 .

[14]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[15]  Sudarshan Tiwari,et al.  A Generalized (Meshfree) Finite Difference Discretization for Elliptic Interface Problems , 2002, Numerical Methods and Application.

[16]  Pierre Degond,et al.  A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann-BGK equation , 2004 .

[17]  Luc Mieussens,et al.  A moving interface method for dynamic kinetic-fluid coupling , 2007, J. Comput. Phys..

[18]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[19]  Patrick Le Tallec,et al.  Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .

[20]  H. Babovsky,et al.  A convergence proof for Nanbu's Boltzmann simulation scheme , 1989 .

[21]  Graham V. Candler,et al.  A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows , 2004 .

[22]  Graeme A. Bird,et al.  Breakdown of translational and rotational equilibrium in gaseous expansions , 1970 .

[23]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[24]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[25]  Axel Klar Domain Decomposition for Kinetic Problems with Nonequilibrium States , 1994 .

[26]  Patrick Le Tallec,et al.  Coupling Boltzmann and Euler equations without overlapping , 1992 .

[27]  Yoshio Sone,et al.  Molecular Gas Dynamics: Theory, Techniques, and Applications , 2006 .

[28]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[29]  Graham V. Candler,et al.  A Hybrid CFD-DSMC Method of Modeling Continuum-Rarefied Flows , 2004 .

[30]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[31]  Thomas E. Schwartzentruber,et al.  A hybrid particle-continuum method applied to shock waves , 2006, J. Comput. Phys..

[32]  S. Tiwari,et al.  Coupling of the Boltzmann and Euler Equations with Automatic Domain Decomposition , 1998 .

[33]  Tomoki Ohsawa,et al.  Deterministic Hybrid Computation of Rarefied Gas Flows , 2003 .

[34]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[35]  H. S. Wijesinghe,et al.  Discussion of Hybrid Atomistic-Continuum Methods for Multiscale Hydrodynamics , 2004 .

[36]  Balasubramanya T. Nadiga,et al.  MOMENT REALIZABILITY AND THE VALIDITY OF THE NAVIER-STOKES EQUATIONS FOR RAREFIED GAS DYNAMICS , 1998 .

[37]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[38]  H. Neunzert,et al.  Particle Methods for the Boltzmann Equation , 1995, Acta Numerica.

[39]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[40]  Alejandro L. Garcia,et al.  Generation of the Chapman-Enskog Distribution , 1998 .

[41]  E. Wagner International Series of Numerical Mathematics , 1963 .