A probabilistic two-scale model for high-cycle fatigue life predictions

It is proposed to develop and identify a probabilistic two-scale model for HCF that accounts for the failure of samples, but also for the thermal effects during cyclic loadings in a unified framework. The probabilistic model is based on a Poisson point process. Within the weakest link theory, the model corresponds to a Weibull law for the fatigue limits. The thermal effects can be described if one considers the same hypotheses apart from the weakest link assumption. A method of identification is proposed and uses temperature measurements to identify the scatter in an S/N curve. The validation of the model is obtained by predicting S/N curves for different effective volumes of a dual-phase steel.

[1]  Jean Lemaitre,et al.  Damage 90: a post processor for crack initiation , 1994 .

[2]  Minh Phong Luong,et al.  Infrared thermography of fatigue in metals , 1992, Defense, Security, and Sensing.

[3]  A. Melander,et al.  Variable-amplitude fatigue of a dual-phase sheet steel subjected to prestrain , 1994 .

[4]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[5]  C. E. Stromeyer The determination of fatigue limits under alternating stress conditions , 1914 .

[6]  K. V. Sudhakar,et al.  ANN based prediction model for fatigue crack growth in DP steel , 2001 .

[7]  Peter Schwartz,et al.  Experiments on shear deformation, debonding and local load transfer in a model graphite/glass/epoxy microcomposite , 1991 .

[8]  Antonino Risitano,et al.  Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components , 2000 .

[9]  R. Priestner,et al.  Fatigue crack propagation behavior in dual-phase steel , 1999 .

[10]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[11]  Dominique Jeulin,et al.  Modeles morphologiques de structures aleatoires et de changement d'echelle , 1991 .

[12]  François Hild,et al.  Hétérogénéité des contraintes et rupture des matériaux fragiles , 1992 .

[13]  Maurits ten Bosch,et al.  La transmission de la chaleur , 1930 .

[14]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[15]  Marcelo dos Santos Pereira,et al.  Fatigue life studies in carbon dual-phase steels , 1996 .

[16]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[17]  Z. Wang,et al.  Fatigue of martensite-ferrite high strength low-alloy dual phase steels , 1999 .

[18]  David L. Davidson,et al.  INCORPORATING THRESHOLD AND ENVIRONMENTAL EFFECTS INTO THE DAMAGE ACCUMULATION MODEL FOR FATIGUE CRACK GROWTH , 1980 .

[19]  T. C. Lei,et al.  DISLOCATION SUBSTRUCTURES IN FERRITE OF PLAIN CARBON DUAL-PHASE STEELS AFTER FATIGUE FRACTURE , 1994 .

[20]  S. L. Phoenix,et al.  Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .

[21]  André Galtier,et al.  Influence de la microstructure des aciers sur leur propriétés mécaniques , 2002 .

[22]  Jean-Yves Bérard,et al.  Détermination de la limite d’endurance des matériaux par thermographie infrarouge. Application sur un bras de suspension , 1998 .

[23]  K. Dang Van,et al.  Fatigue design of structures under thermomechanical loadings , 2002 .

[25]  Jean Lemaitre,et al.  A two scale damage concept applied to fatigue , 1999 .

[26]  W. Weibull A statistical theory of the strength of materials , 1939 .

[27]  Takashi Miyata,et al.  The Influence of Microstructural Morphology and Prestrain on Fatigue Crack Propagation of Dual-phase Steels in the Near-threshold Region , 1999 .

[28]  François Hild,et al.  HIGH-CYCLE FATIGUE BEHAVIOUR OF SPHEROIDAL GRAPHITE CAST IRON , 1998 .

[29]  Li Zhonghua,et al.  LOW‐CYCLE FATIGUE INVESTIGATIONS AND NUMERICAL SIMULATIONS ON DUAL PHASE STEEL WITH DIFFERENT MICROSTRUCTURES , 1990 .

[30]  François Hild,et al.  Fatigue failure maps of heterogeneous materials , 1996 .

[31]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  André Chrysochoos,et al.  An infrared image processing to analyse the calorific effects accompanying strain localisation , 2000 .

[33]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .