Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis

The space-based gravitational-wave detector eLISA has been selected as the ESA L3 mission, and the mission design will be finalized by the end of this decade. To prepare for mission formulation over the next few years, several outstanding and urgent questions in data analysis will be addressed using mock data challenges, informed by instrument measurements from the LISA Pathfinder satellite launching at the end of 2015. These data challenges will require accurate and computationally affordable waveform models for anticipated sources such as the extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. Previous data challenges have made use of the well-known analytic EMRI waveforms of Barack and Cutler, which are extremely quick to generate but dephase relative to more accurate waveforms within hours, due to their mismatched radial, polar and azimuthal frequencies. In this paper, we describe an augmented Barack–Cutler model that uses a frequency map to the correct Kerr frequencies, along with updated evolution equations and a simple fit to a more accurate model. The augmented waveforms stay in phase for months and may be generated with virtually no additional computational cost.

[1]  K. Danzmann,et al.  LISA and its pathfinder , 2015, Nature Physics.

[2]  N. Sago,et al.  Calculation of radiation reaction effect on orbital parameters in Kerr spacetime , 2015, 1505.01600.

[3]  S. Hughes,et al.  Erratum: Gravitational wave snapshots of generic extreme mass ratio inspirals [Phys. Rev. D 73, 024027 (2006)] , 2013 .

[4]  Shane L. Larson,et al.  Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors , 2012, Living reviews in relativity.

[5]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[6]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[7]  J. Gair,et al.  Evolution of inspiral orbits around a Schwarzschild black hole , 2011, 1111.6908.

[8]  J. Gair,et al.  eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime , 2012 .

[9]  J. Gair,et al.  Forced motion near black holes , 2010, 1012.5111.

[10]  E. Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.

[11]  L. Barack Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.

[12]  S. Hughes Gravitational Waves from Merging Compact Binaries , 2009, 0903.4877.

[13]  J. Gair,et al.  Erratum: 'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole [Phys. Rev. D 75, 024005 (2007)] , 2008 .

[14]  M. Vallisneri,et al.  LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms , 2007, 0707.2982.

[15]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[16]  B. S. Sathyaprakash,et al.  The Mock LISA Data Challenges: An overview , 2006, gr-qc/0609105.

[17]  J. Gair,et al.  "Kludge"gravitational waveforms for a test-body orbiting a Kerr black hole , 2006, gr-qc/0607007.

[18]  Naoki Seto,et al.  The Japanese space gravitational wave antenna—DECIGO , 2006 .

[19]  J. Gair,et al.  Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.

[20]  S. Hughes,et al.  Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.

[21]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[22]  S. Hughes,et al.  Rotating black hole orbit functionals in the frequency domain , 2003, astro-ph/0308479.

[23]  Y. Mino Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.

[24]  W. Schmidt Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.

[25]  S. Hughes Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.

[26]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[27]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[28]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[29]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[30]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .