Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis
暂无分享,去创建一个
[1] K. Danzmann,et al. LISA and its pathfinder , 2015, Nature Physics.
[2] N. Sago,et al. Calculation of radiation reaction effect on orbital parameters in Kerr spacetime , 2015, 1505.01600.
[3] S. Hughes,et al. Erratum: Gravitational wave snapshots of generic extreme mass ratio inspirals [Phys. Rev. D 73, 024027 (2006)] , 2013 .
[4] Shane L. Larson,et al. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors , 2012, Living reviews in relativity.
[5] Bernard F. Schutz,et al. Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.
[6] Bernard F. Schutz,et al. Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.
[7] J. Gair,et al. Evolution of inspiral orbits around a Schwarzschild black hole , 2011, 1111.6908.
[8] J. Gair,et al. eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime , 2012 .
[9] J. Gair,et al. Forced motion near black holes , 2010, 1012.5111.
[10] E. Poisson,et al. The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.
[11] L. Barack. Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.
[12] S. Hughes. Gravitational Waves from Merging Compact Binaries , 2009, 0903.4877.
[13] J. Gair,et al. Erratum: 'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole [Phys. Rev. D 75, 024005 (2007)] , 2008 .
[14] M. Vallisneri,et al. LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms , 2007, 0707.2982.
[15] Stanislav Babak,et al. An Overview of the Mock LISA Data Challenges , 2006 .
[16] B. S. Sathyaprakash,et al. The Mock LISA Data Challenges: An overview , 2006, gr-qc/0609105.
[17] J. Gair,et al. "Kludge"gravitational waveforms for a test-body orbiting a Kerr black hole , 2006, gr-qc/0607007.
[18] Naoki Seto,et al. The Japanese space gravitational wave antenna—DECIGO , 2006 .
[19] J. Gair,et al. Improved approximate inspirals of test bodies into Kerr black holes , 2005, gr-qc/0510129.
[20] S. Hughes,et al. Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.
[21] Curt Cutler,et al. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.
[22] S. Hughes,et al. Rotating black hole orbit functionals in the frequency domain , 2003, astro-ph/0308479.
[23] Y. Mino. Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.
[24] W. Schmidt. Celestial mechanics in Kerr spacetime , 2002, gr-qc/0202090.
[25] S. Hughes. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.
[26] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[27] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[28] Saul A. Teukolsky,et al. Perturbations of a rotating black hole , 1974 .
[29] Saul A. Teukolsky,et al. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .
[30] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .