Inhibition of bacterial biofilms by the snake venom proteome

[1]  G. McCormack,et al.  Sponge-derived fatty acids inhibit biofilm formation of MRSA and MSSA by down-regulating biofilm-related genes specific to each pathogen. , 2023, Journal of Applied Microbiology.

[2]  Drew R. Schield,et al.  Snakes on a plain: biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake , 2023, BMC Biology.

[3]  E. A. Myers,et al.  Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation–Drift Equilibrium , 2023, Journal of Molecular Evolution.

[4]  D. Baiwir,et al.  Next-Generation Sequencing for Venomics: Application of Multi-Enzymatic Limited Digestion for Inventorying the Snake Venom Arsenal , 2023, Toxins.

[5]  M. Okumu,et al.  Antibacterial Activity of Venom from the Puff Adder (Bitis arietans), Egyptian Cobra (Naja haje), and Red Spitting Cobra (Naja pallida) , 2023, International journal of microbiology.

[6]  David J. Williams,et al.  Clinical aspects of snakebite envenoming and its treatment in low-resource settings , 2023, The Lancet.

[7]  K. Ariyoshi,et al.  A case series of samar cobra, Naja samarensis Peters, 1861 (Elapidae) envenomation. , 2022, Toxicon : official journal of the International Society on Toxinology.

[8]  A. Antonelli,et al.  Snakebite incidence in rural sub-Saharan Africa might be severely underestimated. , 2022, Toxicon : official journal of the International Society on Toxinology.

[9]  Iekhsan Othman,et al.  Estimating economic and disease burden of snakebite in ASEAN countries using a decision analytic model , 2022, PLoS neglected tropical diseases.

[10]  E. D. Di Domenico,et al.  The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections , 2022, Microorganisms.

[11]  Lori A. S. Snyder,et al.  Bacterial Adaptation to Venom in Snakes and Arachnida , 2022, Microbiology spectrum.

[12]  O. Thomas,et al.  Bis-Indole Alkaloids Isolated from the Sponge Spongosorites calcicola Disrupt Cell Membranes of MRSA , 2022, International journal of molecular sciences.

[13]  Alan D. Lopez,et al.  Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis , 2022, The Lancet.

[14]  K. Y. Tan,et al.  Snake Venom Proteomics of Samar Cobra (Naja samarensis) from the Southern Philippines: Short Alpha-Neurotoxins as the Dominant Lethal Component Weakly Cross-Neutralized by the Philippine Cobra Antivenom , 2021, Frontiers in Pharmacology.

[15]  V. Gushchin,et al.  Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2 , 2021, Cellular and molecular life sciences : CMLS.

[16]  M. Abubakar,et al.  Venom proteomic analysis of medically important Nigerian viper Echis ocellatus and Bitis arietans snake species , 2021, Biochemistry and biophysics reports.

[17]  T. Behl,et al.  Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents , 2021 .

[18]  V. O’Flaherty,et al.  Synanthropic spiders, including the global invasive noble false widow Steatoda nobilis, are reservoirs for medically important and antibiotic resistant bacteria , 2020, Scientific Reports.

[19]  O. Franco,et al.  Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom , 2020, Toxins.

[20]  A. H. Laustsen,et al.  Causes and Consequences of Snake Venom Variation , 2020, Trends in pharmacological sciences.

[21]  I. Vetter,et al.  Animal toxins — Nature’s evolutionary-refined toolkit for basic research and drug discovery , 2020, Biochemical Pharmacology.

[22]  Ronan Sulpice,et al.  Venomics Approach Reveals a High Proportion of Lactrodectus-Like Toxins in the Venom of the Noble False Widow Spider Steatoda nobilis , 2020, Toxins.

[23]  R. Kini,et al.  The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor V and X-Activating Activity , 2020, Toxins.

[24]  C. R. Wang,et al.  Interrogating the higher order structures of snake venom proteins using an integrated mass spectrometric approach. , 2020, Journal of proteomics.

[25]  T. Lindahl,et al.  Static platelet adhesion, flow cytometry and serum TXB2 levels for monitoring platelet inhibiting treatment with ASA and clopidogrel in coronary artery disease: a randomised cross-over study , 2009, Journal of Translational Medicine.

[26]  K. Healy,et al.  Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes , 2020, Toxins.

[27]  M. Pietrowska,et al.  Antimicrobial Activity of Protein Fraction from Naja ashei Venom against Staphylococcus epidermidis , 2020, Molecules.

[28]  A. P. Aguilar,et al.  Carbohydrate-independent antibiofilm effect of Bothrops jararacussu lectin BJcuL on Staphylococcus aureus. , 2019, Microbial pathogenesis.

[29]  R. Cattley,et al.  Multidrug-Resistant Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. in Houseflies and Blowflies from Farms and Their Environmental Settings , 2019, International journal of environmental research and public health.

[30]  Sabah Ul-Hasan,et al.  The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP) , 2019, Toxicon: X.

[31]  A. Desvars-Larrive,et al.  Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017 , 2019, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[32]  S. Wong,et al.  Vibrio parahaemolyticus: The protagonist of foodborne diseases , 2019, Progress In Microbes & Molecular Biology.

[33]  R. Jha,et al.  Recent advances in Staphylococcus aureus infection: focus on vaccine development , 2019, Infection and drug resistance.

[34]  D. Campoccia,et al.  Implant infections: adhesion, biofilm formation and immune evasion , 2018, Nature Reviews Microbiology.

[35]  Shunyi Zhu,et al.  Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs , 2018, Front. Microbiol..

[36]  R. Rappuoli,et al.  Deploy vaccines to fight superbugs , 2017, Nature.

[37]  Joon-Hee Lee,et al.  Antibiofilm agents: A new perspective for antimicrobial strategy , 2017, Journal of Microbiology.

[38]  G. Isbister,et al.  A Review and Database of Snake Venom Proteomes , 2017, Toxins.

[39]  R. C. Whiting,et al.  A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments , 2017 .

[40]  J. Kool,et al.  Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise , 2017, British journal of haematology.

[41]  Iekhsan Othman,et al.  Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics , 2016, Toxins.

[42]  Bing Li,et al.  Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification , 2016, Current Microbiology.

[43]  J. O'Neill,et al.  Tackling drug-resistant infections globally: final report and recommendations , 2016 .

[44]  A. Al-Asmari,et al.  Assessment of the Antimicrobial Activity of Few Saudi Arabian Snake Venoms , 2015, The open microbiology journal.

[45]  L. D. de Oliveira,et al.  A C-Type Lectin from Bothrops jararacussu Venom Disrupts Staphylococcal Biofilms , 2015, PloS one.

[46]  Hyun Seob Cho,et al.  Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities , 2015, Biofouling.

[47]  David Lebeaux,et al.  Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics , 2014, Microbiology and Molecular Reviews.

[48]  J. Calvete,et al.  Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms , 2014, Proceedings of the National Academy of Sciences.

[49]  Anuradha Ghosh,et al.  Insects Represent a Link between Food Animal Farms and the Urban Environment for Antibiotic Resistance Traits , 2014, Applied and Environmental Microbiology.

[50]  Timothy J. Foster,et al.  Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus , 2013, Nature Reviews Microbiology.

[51]  Long-Sen Chang,et al.  Membrane-damaging activity of Taiwan cobra cardiotoxin 3 is responsible for its bactericidal activity. , 2011, Toxicon : official journal of the International Society on Toxinology.

[52]  S. Sekaran,et al.  Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. , 2011, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[53]  M. Toyama,et al.  Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. , 2010, Toxicon : official journal of the International Society on Toxinology.

[54]  S. Wagstaff,et al.  Intra-specific variation in venom of the African Puff Adder (Bitis arietans): Differential expression and activity of snake venom metalloproteinases (SVMPs). , 2010, Toxicon : official journal of the International Society on Toxinology.

[55]  J. Calvete,et al.  Exploring the venom proteome of the African puff adder, Bitis arietans, using a combinatorial peptide ligand library approach at different pHs. , 2010, Journal of proteomics.

[56]  J. Calvete,et al.  Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa. , 2007, Journal of proteome research.

[57]  P. Gopalakrishnakone,et al.  Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes , 2007, Journal of applied microbiology.

[58]  D. Robinson,et al.  Association between Methicillin Susceptibility and Biofilm Regulation in Staphylococcus aureus Isolates from Device-Related Infections , 2007, Journal of Clinical Microbiology.

[59]  J. Calvete,et al.  Molecular Cloning of Disintegrin-like Transcript BA-5A from a Bitis arietans Venom Gland cDNA Library: A Putative Intermediate in the Evolution of the Long-Chain Disintegrin Bitistatin , 2006, Journal of Molecular Evolution.

[60]  Ming Li,et al.  PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[61]  Masahira Hattori,et al.  Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae , 2003, The Lancet.

[62]  L. Gautier,et al.  Comparative Genomics of Listeria Species , 2001, Science.

[63]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[64]  R. Blaylock Antibacterial properties of KwaZulu natal snake venoms. , 2000, Toxicon : official journal of the International Society on Toxinology.

[65]  R. Novick Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. , 1967, Virology.

[66]  B. Holloway Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.

[67]  Asad U. Khan,et al.  Updates on the pathogenicity status of Pseudomonas aeruginosa. , 2019, Drug discovery today.

[68]  David J. Williams,et al.  Snakebite envenoming , 2017, Nature Reviews Disease Primers.

[69]  J. Chippaux,et al.  [Guidelines for the production, control and regulation of snake antivenom immunoglobulins]. , 2010, Biologie aujourd'hui.

[70]  P. Ringwald,et al.  Antimicrobial resistance. , 2001, Emerging infectious diseases.

[71]  B. Smith,et al.  SDS Polyacrylamide Gel Electrophoresis of Proteins. , 1984 .

[72]  M. Höök,et al.  MSCRAMM-mediated adherence of microorganisms to host tissues. , 1994, Annual review of microbiology.