High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME

One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.

[1]  Yi Wang,et al.  First-principles study of ternary fcc solution phases from special quasirandom structures , 2007, 0709.2302.

[2]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[3]  M. Hillert The compound energy formalism , 2001 .

[4]  Yi Wang,et al.  Computational Thermodynamics of Materials , 2016 .

[5]  N. Saunders,et al.  CALPHAD : calculation of phase diagrams : a comprehensive guide , 1998 .

[6]  M. Stan,et al.  A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams , 2003 .

[7]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[8]  Raymundo Arroyave,et al.  Ab initio thermodynamic properties of stoichiometric phases in the Ni–Al system , 2005 .

[9]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[10]  Jorge O. Sofo,et al.  First-principles study of binary bcc alloys using special quasirandom structures , 2004 .

[11]  Yi Wang,et al.  Phonon dispersions in random alloys: a method based on special quasi-random structure force constants , 2011, Journal of Physics: Condensed Matter.

[12]  J. Ågren,et al.  CALPHAD, first and second generation – Birth of the materials genome , 2014 .

[13]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[14]  Ying Yang,et al.  PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation , 2009 .

[15]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[16]  Zi-kui Liu,et al.  The development of phase-based property data using the CALPHAD method and infrastructure needs , 2014, Integrating Materials and Manufacturing Innovation.

[17]  A. Dinsdale SGTE data for pure elements , 1991 .

[18]  Erich Königsberger,et al.  Improvement of excess parameters from thermodynamic and phase diagram data by a sequential Bayes algorithm , 1991 .

[19]  Yi Wang,et al.  Ab initio lattice stability in comparison with CALPHAD lattice stability , 2004 .

[20]  L. Kaufman The stability of metallic phases , 1969 .

[21]  David Ulrich Furrer,et al.  The development of the ICME supply-chain: Route to ICME implementation and sustainment , 2011 .

[22]  Zi-Kui Liu,et al.  Perspective on Materials Genome® , 2014 .

[23]  Gregory B Olson,et al.  Preface to the viewpoint set on: The Materials Genome , 2014 .

[24]  David L. McDowell,et al.  The Penn State-Georgia Tech CCMD: ushering in the ICME Era , 2014, Integrating Materials and Manufacturing Innovation.

[25]  H. J. Arnold Introduction to the Practice of Statistics , 1990 .

[26]  Zi-kui Liu,et al.  First-principles study of constitutional point defects in B2 NiAl using special quasirandom structures , 2005 .

[27]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[28]  Erich Königsberger,et al.  A new optimization routine for chemsage , 1995 .

[29]  Zi-kui Liu,et al.  Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations , 2004 .

[30]  Chao Jiang,et al.  Site preference of transition-metal elements in B2 NiAl: A comprehensive study , 2007 .

[31]  W. Xiong,et al.  A new approach to establish both stable and metastable phase equilibria for fcc ordered/disordered phase transition: application to the Al–Ni and Ni–Si systems , 2012 .

[32]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[33]  P. J. Spencer A brief history of CALPHAD , 2008 .

[34]  Wei Xiong,et al.  Thermodynamic modelling of crystalline unary phases , 2014 .

[35]  I. Ansara,et al.  Thermodynamic re-assessment of the ternary system Al-Cr-Ni , 2001 .

[36]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[38]  Zi-kui Liu,et al.  Thermodynamic modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni ternary systems towards a description for Al–Co–Cr–Ni , 2016 .