Quasi‐interpolation on the Body Centered Cubic Lattice
暂无分享,去创建一个
[1] Eduard Gröller,et al. Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..
[2] Ingrid Carlbom,et al. Optimal filter design for volume reconstruction and visualization , 1993, Proceedings Visualization '93.
[3] Roger Crawfis,et al. Spatial domain filter design , 1999 .
[4] Charles K. Chui,et al. A multivariate analog of Marsden's identity and a quasi-interpolation scheme , 1987 .
[5] C. R. Deboor,et al. A practical guide to splines , 1978 .
[6] Balbir Kumar,et al. Digital differentiators , 1993, Signal Processing and its Applications.
[7] Robert Bregovic,et al. Multirate Systems and Filter Banks , 2002 .
[8] Jörg Peters,et al. Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.
[9] Balázs Csébfalvi,et al. An Evaluation of Prefiltered Reconstruction Schemes for Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.
[10] M. Unser,et al. Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.
[11] Tom Lyche,et al. Quasi-interpolation projectors for box splines , 2008 .
[12] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[13] Arun N. Netravali,et al. Reconstruction filters in computer-graphics , 1988, SIGGRAPH.
[14] C. D. Boor,et al. Box splines , 1993 .
[15] Balázs Csébfalvi,et al. Prefiltered Gaussian reconstruction for high-quality rendering of volumetric data sampled on a body-centered cubic grid , 2005, VIS 05. IEEE Visualization, 2005..
[16] Dimitri Van De Ville,et al. Efficient volume rendering on the body centered cubic lattice using box splines , 2010, Comput. Graph..
[17] Alireza Entezari,et al. Optimal sampling lattices and trivariate box splines , 2007 .
[18] Carl de Boor,et al. On uniform approximation by splines , 1968 .
[19] M. Unser,et al. Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.
[20] Steve Marschner,et al. An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.
[21] Thomas Theußl,et al. Reconstruction Schemes for High Quality Raycasting of the Body-Centered Cubic Grid , 2022 .
[22] Dimitri Van De Ville,et al. Quasi-Interpolating Spline Models for Hexagonally-Sampled Data , 2007, IEEE Transactions on Image Processing.
[23] Daniel Weiskopf,et al. On visual quality of optimal 3D sampling and reconstruction , 2007, GI '07.
[24] Dimitri Van De Ville,et al. Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.
[25] Michael Unser,et al. Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..
[26] Ramsay Dyer,et al. Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.
[27] D. Levin,et al. Analysis of quasi-uniform subdivision , 2003 .
[28] Klaus Mueller,et al. A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).
[29] T. Moller,et al. Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).
[30] David Middleton,et al. Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..
[31] Rik Van de Walle,et al. Accepted for Publication in Ieee Transactions on Image Processing Hex-splines: a Novel Spline Family for Hexagonal Lattices , 2022 .