Quasi‐interpolation on the Body Centered Cubic Lattice

This paper introduces a quasi‐interpolation method for reconstruction of data sampled on the Body Centered Cubic (BCC) lattice. The reconstructions based on this quasi‐interpolation achieve the optimal approximation order offered by the shifts of the quintic box spline on the BCC lattice. We also present a local FIR filter that is used to filter the data for quasi‐interpolation. We document the improved quality and fidelity of reconstructions after employing the introduced quasi‐interpolation method. Finally the resulting quasi‐interpolation on the BCC sampled data are compared to the corresponding quasi‐interpolation method on the Cartesian sampled data.

[1]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[2]  Ingrid Carlbom,et al.  Optimal filter design for volume reconstruction and visualization , 1993, Proceedings Visualization '93.

[3]  Roger Crawfis,et al.  Spatial domain filter design , 1999 .

[4]  Charles K. Chui,et al.  A multivariate analog of Marsden's identity and a quasi-interpolation scheme , 1987 .

[5]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[6]  Balbir Kumar,et al.  Digital differentiators , 1993, Signal Processing and its Applications.

[7]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[8]  Jörg Peters,et al.  Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Balázs Csébfalvi,et al.  An Evaluation of Prefiltered Reconstruction Schemes for Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.

[10]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[11]  Tom Lyche,et al.  Quasi-interpolation projectors for box splines , 2008 .

[12]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[13]  Arun N. Netravali,et al.  Reconstruction filters in computer-graphics , 1988, SIGGRAPH.

[14]  C. D. Boor,et al.  Box splines , 1993 .

[15]  Balázs Csébfalvi,et al.  Prefiltered Gaussian reconstruction for high-quality rendering of volumetric data sampled on a body-centered cubic grid , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Dimitri Van De Ville,et al.  Efficient volume rendering on the body centered cubic lattice using box splines , 2010, Comput. Graph..

[17]  Alireza Entezari,et al.  Optimal sampling lattices and trivariate box splines , 2007 .

[18]  Carl de Boor,et al.  On uniform approximation by splines , 1968 .

[19]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[20]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[21]  Thomas Theußl,et al.  Reconstruction Schemes for High Quality Raycasting of the Body-Centered Cubic Grid , 2022 .

[22]  Dimitri Van De Ville,et al.  Quasi-Interpolating Spline Models for Hexagonally-Sampled Data , 2007, IEEE Transactions on Image Processing.

[23]  Daniel Weiskopf,et al.  On visual quality of optimal 3D sampling and reconstruction , 2007, GI '07.

[24]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[26]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[27]  D. Levin,et al.  Analysis of quasi-uniform subdivision , 2003 .

[28]  Klaus Mueller,et al.  A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[29]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[30]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[31]  Rik Van de Walle,et al.  Accepted for Publication in Ieee Transactions on Image Processing Hex-splines: a Novel Spline Family for Hexagonal Lattices , 2022 .