Detecting Dependence With Kendall Plots

Earlier literature proposed a rank-based graphical tool called a chi-plot which, in conjunction with a traditional scatterplot of the raw data, can help detect the presence of association in a random sample from some continuous bivariate distribution. This article suggests an alternative display called a Kendall plot, or K-plot for short, which adapts the concept of probability plot to the detection of dependence. The new procedure, which is rooted in the probability integral transformation, retains the chi-plot's key property of invariance with respect to monotone transformations of the marginal distributions. K-plots are easier to interpret than chi-plots, however, because the curvature that they display in cases of association is related in a definite way to the copula characterizing the underlying dependence structure. In addition, K-plots have the advantage of being readily extendible to the multivariate context.

[1]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[2]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[3]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[4]  N. Fisher,et al.  Chi-plots for assessing dependence , 1985 .

[5]  D. Oakes,et al.  Semiparametric inference in a model for association in bivanate survival data , 1986 .

[6]  Eric R. Ziegel,et al.  Counterexamples in Probability and Statistics , 1986 .

[7]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[8]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[9]  Robert T. Clemen,et al.  Copula Models for Aggregating Expert Opinions , 1996, Oper. Res..

[10]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[11]  Christian Genest,et al.  A Stochastic Ordering Based on a Decomposition of Kendall’s Tau , 1997 .

[12]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[13]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[14]  T. Ledwina,et al.  Data-Driven Rank Tests for Independence , 1999 .

[15]  Ana Isabel Garralda Guillem Structure de dépendance des lois de valeurs extrêmes bivariées , 2000 .

[16]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[17]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[18]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[19]  C. Genest,et al.  Tests of serial independence based on Kendall's process , 2002 .