Failure Analysis of Process Equipment Used in the Production of Polyvinyl Chloride

[1]  I. Bastos,et al.  A thermodynamically consistent modelling of stress corrosion tests in elasto-viscoplastic materials , 2014 .

[2]  S. Ziaei,et al.  Failure analysis: Chloride stress corrosion cracking of AISI 316 stainless steel downhole pressure memory gauge cover , 2013 .

[3]  M. Koyama,et al.  Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel , 2013 .

[4]  M. Koyama,et al.  Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen char , 2013 .

[5]  V. Kain,et al.  Microstructural and electrochemical characterisation of heat-treated 347 stainless steel with different phases , 2013 .

[6]  D. Suh,et al.  Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  S. Weber,et al.  Hydrogen environment embrittlement of stable austenitic steels , 2012 .

[8]  Hamid Reza Rezaie,et al.  Analysis of ethylene cracking furnace tubes , 2012 .

[9]  M. Koyama,et al.  Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel , 2012 .

[10]  May L. Martin,et al.  Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach , 2011 .

[11]  May L. Martin,et al.  On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels , 2011 .

[12]  S. Lynch Mechanistic and fractographic aspects of stress corrosion cracking , 2011 .

[13]  V. Kain Stress corrosion cracking (SCC) in stainless steels , 2011 .

[14]  Η.Μ. Τawancy Failure of hydrocracker heat exchanger tubes in an oil refinery by polythionic acid-stress corrosion cracking , 2009 .

[15]  R. Yin,et al.  Chloride-induced stress corrosion cracking of furnace burner tubes , 2007 .

[16]  R. Yin,et al.  Failure analysis of an EDC incinerator quench nozzle , 2007 .

[17]  M. Sutton,et al.  Study of slant fracture in ductile materials , 2006 .

[18]  S. Wang Conditions for stress corrosion cracking to occur from crevice corrosion sites and related electrochemical features , 2004 .

[19]  R. C. Newman,et al.  2001 W.R. Whitney Award Lecture: Understanding the Corrosion of Stainless Steel , 2001 .

[20]  B. Sasmal Mechanism of the formation of M23C6 plates around undissolved NbC particles in a stabilized austenitic stainless steel , 1997 .

[21]  R. Strong,et al.  Crude unit corrosion and corrosion control , 1996 .

[22]  L. Garverick,et al.  Corrosion in the Petrochemical Industry , 1994 .

[23]  R. Ayer,et al.  Instabilities in stabilized austenitic stainless steels , 1992, Metallurgical and Materials Transactions A.

[24]  H. Uno,et al.  Effect of Nb on Intergranular Precipitation Behavior of Cr Carbides in N-Bearing Austenitic Stainless Steels , 1992 .

[25]  Schweitzer,et al.  Corrosion and corrosion protection handbook , 1983 .

[26]  J. W. Edington Typical Electron Microscope Investigations , 1976 .

[27]  I. Bernstein Chapter IX – RESISTING HYDROGEN EMBRITTLEMENT , 1976 .

[28]  G. S. Ansell,et al.  Alloy and microstructural design , 1976 .

[29]  J. Mitchell,et al.  Imperfection and microstructure , 1975 .

[30]  F. R. Beckitt,et al.  The shape and mechanism of formation of M23C6 carbide in austenite , 1967 .

[31]  M. Lewis,et al.  Precipitation of M23C6 in austenitic steels , 1965 .

[32]  R. Allio,et al.  An Integrated Theory of Stress Corrosion , 1965, Nature.

[33]  D. Douglass,et al.  Ordering, Stacking Faults and Stress Corrosion Cracking In Austenitic Alloys , 1964 .