Geodesic diameter of a polygonal domain in O(n^4 log n) time

We show that the geodesic diameter of a polygonal domain with n vertices can be computed in O(n^4 log n) time by considering O(n^3) candidate diameter endpoints; the endpoints are a subset of vertices of the overlay of shortest path maps from vertices of the domain.

[1]  Atlas F. Cook,et al.  Shortest Path Problems on a Polyhedral Surface , 2009, Algorithmica.

[2]  Subhash Suri,et al.  Matrix searching with the shortest path metric , 1993, SIAM J. Comput..

[3]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[4]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[5]  Joseph O'Rourke,et al.  Computing the geodesic diameter of a 3-polytope , 1989, SCG '89.

[6]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[7]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[8]  Boris Aronov,et al.  Star Unfolding of a Polytope with Applications , 1997, SIAM J. Comput..

[9]  Joseph S. B. Mitchell,et al.  Two-point Euclidean shortest path queries in the plane , 1999, SODA '99.

[10]  Subhash Suri The all-geodesic furthest neighbor problem for simple polygons , 1987, SCG '87.