Superplastic deformation of ice: Experimental observations

Creep experiments on fine-grained ice reveal the existence of three creep regimes: (1) a dislocation creep regime, (2) a superplastic flow regime in which grain boundary sliding is an important deformation process, and (3) a basal slip creep regime in which the strain rate is limited by basal slip. Dislocation creep in ice is likely climb-limited, is characterized by a stress exponent of 4.0, and is independent of grain size. Superplastic flow is characterized by a stress exponent of 1.8 and depends inversely on grain size to the 1.4 power. Basal slip limited creep is characterized by a stress exponent of 2.4 and is independent of grain size. A fourth creep mechanism, diffusional flow, which usually occurs at very low stresses, is inaccessible at practical laboratory strain rates even for our finest grain sizes of ∼3 μm. A constitutive equation based on these experimental results that includes flow laws for these four creep mechanisms is described. This equation is in excellent agreement with published laboratory creep data for coarse-grained samples at high temperatures. Superplastic flow of ice is the rate-limiting creep mechanism over a wide range of temperatures and grain sizes at stresses ≲0.1 MPa, conditions which overlap those occurring in glaciers, ice sheets, and icy planetary interiors.

[1]  R. Ramseier Self-diffusion in ice monocrystals , 1967 .

[2]  R. W. Baker The Influence of Ice-Crystal Size on Creep , 1978, Journal of Glaciology.

[3]  Samuel Steinemann,et al.  Results of Preliminary Experiments on the Plasticity of Ice Crystals , 1954, Journal of Glaciology.

[4]  Amiya K. Mukherjee,et al.  The rate controlling mechanism in superplasticity , 1971 .

[5]  K. A. Padmanabhan,et al.  Superplasticity: A review , 1970 .

[6]  I. Edelman,et al.  Self-diffusion and Structure of Liquid Water. III. Measurement of the Self-diffusion of Liquid Water with H2, H3 and O18 as Tracers1 , 1953 .

[7]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[8]  J. Glen,et al.  The Mechanical Properties of Single Crystals of Pure Ice , 1969, Journal of Glaciology.

[9]  Stephen H. Kirby,et al.  Erratum: ``Creep of water ices at planetary conditions: A compilation'' , 1997 .

[10]  David Tabor,et al.  The friction and creep of polycrystalline ice , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Terence G. Langdon,et al.  The physics of superplastic deformation , 1991 .

[12]  N. H. Fletcher,et al.  The Chemical Physics of Ice: Liquid water and freezing , 1970 .

[13]  H. C. Heard,et al.  Water ice phases II, III, and V: Plastic deformation and phase relationships , 1988 .

[14]  K. Chyung,et al.  Solution-precipitation enhanced creep in solid-liquid aggregates which display a non-zero dihedral angle , 1989 .

[15]  W. Durham,et al.  Rheology of ice I at low stress and elevated confining pressure , 2001 .

[16]  H. Jellinek,et al.  Viscoelastic Properties of Ice , 1956 .

[17]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .

[18]  Malcolm Mellor,et al.  Creep of snow and ice , 1966 .

[19]  D. Goldsby,et al.  Diffusion creep in ice , 1995 .

[20]  W. Peltier,et al.  Ice-age ice-sheet rheology: constraints from the Last Glacial Maximum form of the Laurentide ice sheet , 2000, Annals of Glaciology.

[21]  P. Pimienta,et al.  RATE CONTROLLING PROCESSES IN THE CREEP OF POLAR GLACIER ICE , 1987 .

[22]  Malcolm Mellor,et al.  Deformation and Fracture of Ice Under Uniaxial Stress , 1972, Journal of Glaciology.

[23]  J. Glen,et al.  The Creep Activation Energies of Ice , 1978, Journal of Glaciology.

[24]  R. Evans,et al.  A Flow Law for Temperate Glacier Ice , 1973, Journal of Glaciology.

[25]  H. C. Heard,et al.  INELASTIC PROPERTIES OF ICE Ih AT LOW TEMPERATURES AND HIGH PRESSURES , 1987 .

[26]  D. Kohlstedt,et al.  Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing , 1984 .

[27]  J. Weertman Creep Deformation of Ice , 1983 .

[28]  L. Tauxe,et al.  A relative geomagnetic paleointensity stack from Ontong‐Java Plateau sediments for the Matuyama , 1999 .

[29]  W. Kuhn,et al.  Isotopentrennung beim Gefrieren von Wasser und Diffusionskonstanten von D und 18O im Eis. Mit Diskussion der Möglichkeit einer Multiplikation der beim Gefrieren auftretenden Isotopentrennung in einer Haarnadelgegenstromvorrichtung , 1958 .

[30]  T. Langdon Grain boundary sliding as a deformation mechanism during creep , 1970 .

[31]  J. Nye,et al.  The Effect of Non-Hydrostatic Stress on Intergranular Water Veins and Lenses in Ice , 1972, Journal of Glaciology.

[32]  T. Butkovich,et al.  The flow law for ice , 1959 .

[33]  G. Wakahama On the Plastic Deformation of Single Crystal of Ice , 1967 .

[34]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  P. Hobbs,et al.  An experimental determination of the surface energies of ice , 1969 .

[36]  D. W. Readey,et al.  Plastic deformation of single crystal ice , 1964 .

[37]  J. W. Glen,et al.  Experiments on the Deformation of Ice , 1952, Journal of Glaciology.

[38]  N. Riehl,et al.  Diffusion von18O in Eis-Einkristallen , 1966 .

[39]  T. Langdon A unified approach to grain boundary sliding in creep and superplasticity , 1994 .

[40]  M. Mellor,et al.  Effect of Temperature on the Creep of Ice , 1969, Journal of Glaciology.

[41]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .

[42]  A. Gow On the Rates of Growth of Grains and Crystals in South Polar Firn , 1969, Journal of Glaciology.

[43]  M. Mellor Creep Tests on Antarctic Glacier Ice , 1959, Nature.

[44]  D. Griggs,et al.  Creep of single crystals of ice , 1954 .

[45]  Mechanisms of Plastic Deformation in Ice Single Crystals , 1967 .

[46]  M. Ashby,et al.  On creep enhanced by a liquid phase , 1983 .

[47]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[48]  D. J. Barber Thin foils of non-metals made for electron microscopy by sputter-etching , 1970 .

[49]  K. Itagaki SELF-DIFFUSION IN ICE SINGLE CRYSTALS. , 1966 .

[50]  W. Durham,et al.  Effects of dispersed particulates on the rheology of water ice at planetary conditions , 1992 .

[51]  John S. Wettlaufer,et al.  The premelting of ice and its environmental consequences , 1995 .

[52]  O. Castelnau,et al.  Dynamic Recrystallization of Ice in Polar Ice Sheets , 1995 .

[53]  M. Mellor,et al.  Creep of Ice under Low Stress , 1969, Journal of Glaciology.

[54]  D. Goldsby Superplasticity in ice , 1998 .

[55]  D. Goldsby,et al.  Flow of Ice I by Dislocation, Grain Boundary Sliding, and Diffusion Processes , 1997 .

[56]  M. F. Ashby,et al.  Rate-controlling processes in the creep of polycrystalline ice , 1983 .

[57]  David L. Goldsby,et al.  Grain boundary sliding in fine-grained ice I , 1997 .

[58]  A. Ball,et al.  Superplasticity in the Aluminium–Zinc Eutectoid , 1969 .

[59]  T. Butkovich,et al.  Creep of Ice at Low Stresses , 1960, Nature.

[60]  W. Durham,et al.  Rheology of water and ammonia-water ices , 1993 .

[61]  W. D. Kingery,et al.  Flow of Polycrystalline Ice at Low Stresses and Small Strains , 1968 .

[62]  R. Ramseier Self‐Diffusion of Tritium in Natural and Synthetic Ice Monocrystals , 1967 .