Natural image statistics in digital image forensics

We describe a set of natural image statistics that are built upon two multi-scale image decompositions, the quadrature mirror filter pyramid decomposition and the local angular harmonic decomposition. These image statistics consist of first- and higher-order statistics that capture certain statistical regularities of natural images. We propose to apply these image statistics, together with classification techniques, to three problems in digital image forensics: (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection. We also apply these image statistics to the traditional art authentication for forgery detection and identification of artists in an art work. For each application we show the effectiveness of these image statistics and analyze their sensitivity and robustness.

[1]  Eero P. Simoncelli A rotation invariant pattern signature , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[2]  Hany Farid,et al.  Exposing digital forgeries by detecting traces of resampling , 2005, IEEE Transactions on Signal Processing.

[3]  Siwei Lyu,et al.  Automatic image orientation determination with natural image statistics , 2005, MULTIMEDIA '05.

[4]  Pierre Moulin,et al.  Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors , 1999, IEEE Trans. Inf. Theory.

[5]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[6]  John W. Woods,et al.  Subband Image Coding , 1990 .

[7]  Donald P. Greenberg,et al.  An experimental evaluation of computer graphics imagery , 1986, TOGS.

[8]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[9]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[10]  D Kersten,et al.  Predictability and redundancy of natural images. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  Gary Bishop,et al.  Measuring the perceived visual realism of images , 2003 .

[12]  Siwei Lyu,et al.  Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines , 2002, Information Hiding.

[13]  Siwei Lyu,et al.  Steganalysis using color wavelet statistics and one-class support vector machines , 2004, IS&T/SPIE Electronic Imaging.

[14]  M. Sellink Pieter Bruegel the Elder , 2006 .

[15]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[16]  M. Hassner,et al.  The use of Markov Random Fields as models of texture , 1980 .

[17]  Alin C. Popescu,et al.  Exposing digital forgeries in color filter array interpolated images , 2005, IEEE Transactions on Signal Processing.

[18]  Hany Farid,et al.  Exposing digital forgeries by detecting traces of resampling , 2005 .

[19]  Ross J. Anderson,et al.  On the limits of steganography , 1998, IEEE J. Sel. Areas Commun..

[20]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[21]  Bernd Girod,et al.  Subband Image Coding , 1996 .

[22]  Eero P. Simoncelli,et al.  Image compression via joint statistical characterization in the wavelet domain , 1999, IEEE Trans. Image Process..

[23]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[24]  Sorina Dumitrescu,et al.  Detection of LSB steganography via sample pair analysis , 2002, IEEE Trans. Signal Process..

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  M. Carter Computer graphics: Principles and practice , 1997 .

[27]  Jessica J. Fridrich,et al.  New methodology for breaking steganographic techniques for JPEGs , 2003, IS&T/SPIE Electronic Imaging.

[28]  Paul A. Viola,et al.  A Non-Parametric Multi-Scale Statistical Model for Natural Images , 1997, NIPS.

[29]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[33]  J. Preston Ξ-filters , 1983 .

[34]  David Kahn,et al.  The History of Steganography , 1996, Information Hiding.

[35]  I. Chon Wavelets and Filter Banks , 1997 .

[36]  C. Frankel,et al.  Distinguishing photographs and graphics on the World Wide Web , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[37]  Michael W. Marcellin,et al.  An overview of JPEG-2000 , 2000, Proceedings DCC 2000. Data Compression Conference.

[38]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Jessica J. Fridrich,et al.  Feature-Based Steganalysis for JPEG Images and Its Implications for Future Design of Steganographic Schemes , 2004, Information Hiding.

[40]  Antonio Torralba,et al.  Semantic organization of scenes using discriminant structural templates , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  Ingemar J. Cox,et al.  Digital Watermarking , 2003, Lecture Notes in Computer Science.

[42]  Markus G. Kuhn,et al.  Information hiding-a survey , 1999, Proc. IEEE.

[43]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[44]  P. Vaidyanathan Quadrature mirror filter banks, M-band extensions and perfect-reconstruction techniques , 1987, IEEE ASSP Magazine.

[45]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Niels Provos,et al.  Detecting Steganographic Content on the Internet , 2002, NDSS.

[47]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[48]  Andreas Pfitzmann,et al.  Attacks on Steganographic Systems , 1999, Information Hiding.

[49]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Anil K. Jain,et al.  On image classification: city images vs. landscapes , 1998, Pattern Recognit..

[51]  Gustavo Carneiro,et al.  Phase-Based Local Features , 2002, ECCV.

[52]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[53]  Martin Vetterli,et al.  A theory of multirate filter banks , 1987, IEEE Trans. Acoust. Speech Signal Process..

[54]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[55]  Song-Chun Zhu,et al.  FRAME: filters, random fields, and minimax entropy towards a unified theory for texture modeling , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[57]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[58]  Richard P. Taylor,et al.  Fractal analysis of Pollock's drip paintings , 1999, Nature.

[59]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[60]  Siwei Lyu,et al.  Steganalysis of recorded speech , 2005, IS&T/SPIE Electronic Imaging.

[61]  Riad I. Hammoud,et al.  Estimating the photorealism of images: distinguishing paintings from photographs , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[62]  J.G. Daugman,et al.  Entropy reduction and decorrelation in visual coding by oriented neural receptive fields , 1989, IEEE Transactions on Biomedical Engineering.

[63]  Eric Cole,et al.  Hiding in Plain Sight: Steganography and the Art of Covert Communication , 2003 .

[64]  Joshua Gluckman On the use of marginal statistics of subband images , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[65]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[66]  Sushil Jajodia,et al.  Steganalysis of Images Created Using Current Steganography Software , 1998, Information Hiding.

[67]  Wolfgang Stechow Pieter Bruegel the Elder , 1968 .

[68]  R. Fletcher Practical Methods of Optimization , 1988 .

[69]  Jessica J. Fridrich,et al.  Steganalysis of JPEG Images: Breaking the F5 Algorithm , 2002, Information Hiding.

[70]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[71]  Song-Chun Zhu,et al.  Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998, International Journal of Computer Vision.

[72]  Christoph Schnörr,et al.  Natural Image Statistics for Natural Image Segmentation , 2005, International Journal of Computer Vision.

[73]  Jessica J. Fridrich,et al.  Quantitative steganalysis of digital images: estimating the secret message length , 2003, Multimedia Systems.

[74]  Sushil Jajodia,et al.  Exploring steganography: Seeing the unseen , 1998, Computer.

[75]  Sorina Dumitrescu,et al.  Detection of LSB Steganography via Sample Pair Analysis , 2002, Information Hiding.

[76]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[77]  Anil K. Jain,et al.  On image classification: city vs. landscape , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[78]  Eero P. Simoncelli 4.7 – Statistical Modeling of Photographic Images , 2005 .

[79]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.